Skip to main content
Chemistry LibreTexts

6.3: Using Lines To Show Organic Structural Formulas

  • Page ID
    285309
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The aromatic structures shown above use a hexagon with a circle in it to denote an aromatic benzene ring. Organic chemistry uses lines to show other kinds of structural formulas as well. The reader who may have occasion to look up organic formulas will probably run into this kind of notation, so it is important to be able to interpret these kinds of formulas. Some line formulas are shown in Figure 6.3.

    In using lines to represent organic structural formulas, the corners where lines intersect and the ends of lines represent C atoms, and each line stands for a covalent bond (2 shared electrons). It is understood that each C atom at the end of a single line has 3 H atoms attached, each C atom at the intersection of 2 lines has 2 C atoms attached, each C at the intersection of 3 lines has 1 H attached, and the intersection of 4 lines denotes a C atom with no H atoms attached. Multiple lines represent multiple bonds as shown for the double bonds in 1,3-butadiene. Substituent groups are shown by their symbols (for individual atoms), or formulas of functional groups consisting of groups of atoms; it is understood that each such group substitutes for a hydrogen atom as shown in the formula of 2,3-dichlorobutane in Figure 6.3. The 6-carbon-atom aromatic ring is denoted by a hexagon with a circle in it.

    Exercise

    What is the structural formula of the compound represented on the left, below?

    Answer

    clipboard_ea3c2662fe97cead782e6e3b612f8cc67.png


    This page titled 6.3: Using Lines To Show Organic Structural Formulas is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Stanley E. Manahan.

    • Was this article helpful?