Skip to main content
Chemistry LibreTexts

22.4: Analyzing Trajectories

  • Page ID
    294371
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Analyzing Trajectories

    Waiting‐Time Distributions, Pclipboard_ec38542e72c364736842732ece9ce115b.png

    τW: Waiting time between arriving and leaving a state or P(k,t)

    Pk: Probability of making k jumps during a time interval, t. → Survival probability

    Pw: Probability of waiting a time τw between jumps? Waiting time distribution → FPT distribution

    Let’s relate these...

    Assume independent events. No memory of history – where it was in trajectory.

    Flux: \(\dfrac{dP_R}{dt}=J\)

    J: Probability of jump during ∆t. ∆t is small enough that J\(\ll\) 1, but long enough to lose memory of earlier configurations.

    The probability of seeing k jumps during a time interval t, where t is divided into N intervals of width Δt (t = N∆t) is given by the binomial distribution

    \[P(k,N)=\dfrac{N!}{k!(N-k)!}J^k(1-J)^{N-k} \]

    Here N≫k. Define rate λ in terms of the average number of jumps per unit time

    \[ \lambda = \dfrac{\langle k \rangle}{t}=\dfrac{1}{\langle \tau_W \rangle} \nonumber \]

    \[J=\lambda \Delta t \rightarrow J=\dfrac{\lambda t}{N} \nonumber \]

    Substituting this into eq. (22.4.1) Error! Reference source not found.. For N ≫ k, recognize

    \[ (1-J)^{N-k} \approx (1-J)^N = \left( 1-\dfrac{\lambda t}{N} \right)^N \approx e^{-\lambda t} \nonumber \]

    The last step is exact for lim N → ∞.

    Poisson distribution for the number of jumps in time t.

    \[ \langle P(k,t) \rangle = \langle \lambda t \rangle = \dfrac{\lambda t}{\langle P^2(k,t)\rangle^{1/2}}=(\lambda t)^{1/2} \nonumber \]

    Fluctuations: \( \sigma / \langle P(k,t) \rangle = (\lambda t)^{-1/2} \)

    OK, now what about Pw the waiting time distribution?

    Consider the probability of not jumping during time t:

    \[P_k(0,t) = e^{-\lambda t} \nonumber \]

    As you wait longer and longer, the probability that you stay in the initial state drops exponentially. Note that Pk(0, t) is related to Pw by integration over distribution of waiting times.

    \[ \int_{t}^{\infty}P_w(t')dt'=P(0,t)=e^{-\lambda t} \nonumber \]

    \[ \int_{t}^{\infty}P_wdt \rightarrow \text {probability of staying for t} \nonumber \]

    \[ \int_{0}^{t}P_wdt \rightarrow \text {probability of jumping within t} \nonumber \]

    Probability of jumping between t and t+∆t:

    Probability of no decay for time <t decay on last

    \[\begin{aligned}
    P_{w}(t) \Delta t &=\overbrace{\left(1-\langle k\rangle \Delta t_{1}\right)} \overbrace{\left(1-\langle k\rangle \Delta t_{2}\right) \ldots\left(1-\langle k\rangle \Delta t_{N}\right)} \overbrace{k \Delta t} \\ &=(1-\langle k\rangle \Delta t)^{N} k \Delta t \approx k e^{-k t} \Delta t \end{aligned} \nonumber \]

    \[\begin{aligned} P_{w} &=\lambda e^{-\lambda t} \\ \langle\tau\rangle &=\int_{0}^{\infty} t p_{w}(t) t
    \end{aligned} \nonumber \]

    \[ \begin{aligned} \langle\tau_{w}\rangle &=1 / \lambda \rightarrow \text {the average waiting time is the lifetime} (1/\lambda)\\
    \langle\tau_{w}^{2}\rangle-\langle\tau_{w}\rangle^{2} &= (1 / \lambda)^{2} \end{aligned} \nonumber \]

    Reduction of Complex Kinetics from Trajectories

    • Integrating over trajectories gives probability densities.
    • Need to choose a region of space to integrate over and thereby define states:

    clipboard_ef63c1295a90b5d1cd322629c0f765c9d.png

    • States: Clustered regions of phase space that have high probability or long persistence.
    • Markovian states: Spend enough time to forget where you came from.
    • Master equation: Coupled first order differential equations for the flow of amplitude between states written in terms of probabilities.

    \[ \dfrac{dP_m}{dt}=\sum_{n}k_{n\rightarrow m}P_n-\sum_{n}k_{m \rightarrow n}P_m \nonumber \]

    \(k_{n\rightarrow m}\) is rate constant for transition from state n to state m. Units: probability/time. Or in matrix form: P=kP where k is the transition rate matrix. With detailed balance, conservation of population all initial conditions will converge on equilibrium


    This page titled 22.4: Analyzing Trajectories is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?