21.8: Specificity in Recognition and Binding
- Page ID
- 294366
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Specificity in Recognition
What determines the ability for a protein to recognize a specific target amongst many partners? To start, let’s run a simple calculation. Take the case that a protein (transcription factor) has to recognize a string of n sequential nucleotides among a total of N bases in a dsDNA.
- Assume that each of the four bases (ATGC) is present with equal probability among the N bases, and that there are no enthalpic differences for binding to a particular base.
- Also, the recognition of a particular base is independent of the other bases in the sequence. (In practice this is a poor assumption).
- The probability of finding a particular n nucleotide sequence amongst all n nucleotide strings is
\[\left( \dfrac{1}{4} \right)^n \]
- For a particular n nucleotide sequence to be unique among a random sequence of N bases, we need
\[\left( \dfrac{1}{4} \right)^n \geq \dfrac{1}{N} \]
- Therefore we can say
\[ n \geq \dfrac{\ln{N}}{\ln{4}} \]
Example
For the case that you want to define a unique binding site among N = 65k base pairs:
- A sequence of n = ln (65000)/ln(4) ≈ 8 base pairs should statistically guarantee a unique binding site.
- n = 9 → 262 kbp
This example illustrates that simple statistical considerations and the diversity of base combinations can provide a certain level of specificity in binding, but that other considerations are important for high fidelity binding. These considerations include the energetics of binding, the presence of multiple binding motifs for a base, and base-sequence specific binding motifs.
Energetics of Binding
We also need to think about the strength of interaction. Let’s assume that the transcription factor has a nonspecific binding interaction with DNA that is weak, but a strong interaction for the target sequence. We quantify these through:
∆G1: nonspecific binding
∆G2: specific binding
Next, let’s consider the degeneracy of possible binding sites:
gn: number of nonspecific binding sites = (N – n) or since N ≫ n: (N – n) ≈ N
gs: number of sites that define the specific interaction: n
The probability of having a binding partner bound to a nonspecific sequence is
\[\begin{aligned}
P_{\text {nonsp }} &=\frac{g_{n} e^{-\Delta G_{1} / k T}}{g_{n} e^{-\Delta G_{1} / k T}+g_{s} e^{-\Delta G_{2} / k T}} \\ &=\frac{(N-n) e^{-\Delta G_{1} / k T}}{(N-n) e^{-\Delta G_{1} / k T}+n e^{-\Delta G_{2} / k T}} \\ &=\frac{1}{1+\frac{n}{N} e^{-\Delta G / k T}} \end{aligned}\]
where ∆G = ∆G2 – ∆G1. We do not want to have a high probability of nonspecific binding, so let’s minimize Pnonsp. Solving for ΔG, and recognizing Pnonsp 1,
\[ \Delta G \leq -k_BT\ln{\left[ \dfrac{N}{nP_{nonsp}} \right] }\]
Suppose we want to have a probability of nonspecific binding to any region of DNA that is Pnonsp ≤ 1%. For N = 106 and n = 10, we find
\[ \Delta G \approx -16k_BT \qquad \textrm{or} \qquad -1.6 k_BT/nucleotide \]
for the probability that the partner being specifically bound with Psp > 99%.
______________________________________________________________________________________
Readings
- G. Schreiber, G. Haran and H. X. Zhou, Fundamental aspects of protein−protein association kinetics, Chem. Rev. 109 (3), 839-860 (2009).
- D. Shoup, G. Lipari and A. Szabo, Diffusion-controlled bimolecular reaction rates. The effect of rotational diffusion and orientation constraints, Biophys. J. 36 (3), 697-714 (1981).
- D. Shoup and A. Szabo, Role of diffusion in ligand binding to macromolecules and cell-bound receptors, Biophys. J. 40 (1), 33-39 (1982).