Skip to main content
Chemistry LibreTexts

7.2: Mathematical Analyses of Binding Graphs

  • Page ID
    132769
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Learning Objectives

    • derive equations from the equation for fractional saturation Y = ([ML]/[M0] = [L]/(KD+ [L]) equations for 1/Y as a function of 1/[L] (double reciprocal plot), Y/[L] vs Y (bound/free vs bound or the Scatchard Plot) and draw a plot of Y vs log [L] (semilog plot)
    • draw error bars on the plots of Y vs L, 1/Y vs I/L, Y/L vs Y and Y vs log L.
    • explain from these derivative equations and graphs how to calculate determine Kd
    • describe appropriate methods to fit the data from these equations with special attention given to the effect of error bars in the experimental value of Y


    This page titled 7.2: Mathematical Analyses of Binding Graphs is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Henry Jakubowski.

    • Was this article helpful?