Skip to main content
Chemistry LibreTexts

The Mass Spectrometry Experiment

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    ms schematic.gif
    Figure MS2. A very approximate schematic of a typical mass spectrometry experiment.

    Mass spectrometry only works with ions, not with neutral molecules. That means a neutral molecules must become charged in order to do this experiment. It is common to generate a cation from the molecule by removing one electron. The electron is knocked off the molecule in a collision. The collision can be caused in two different ways:

    • The molecule can be sent through a stream of high-energy electrons. This method is called electron ionization.
    • The molecule is sent through a stream of small molecules, such as ammonia or methane. This method is called chemical ionization.
    • Electron ionization frequently results in the molecule falling to pieces because of the high energy of the electrons.
    • Chemical ionization results in a "softer" collision because momentum can be dissipated through various bonds in both colliding molecules. Chemical ionization results in less fragmentation of the target molecule.
    • However, after chemical ionization, the ionizing molecule sometimes sticks to the target molecule, leading to a greater "molecular" mass. For example, if ammonia is used for ionization, an extra mass may be observed at 17 amu higher than expected.

    The reason the x-axis on a mass spectrum is labeled m/z (mass-to-charge ratio) is to acknowledge that there are really two factors contributing to the experiment.

    This page titled The Mass Spectrometry Experiment is shared under a not declared license and was authored, remixed, and/or curated by Chris Schaller.

    • Was this article helpful?