Skip to main content
Chemistry LibreTexts

Appendix 1: Derivation of the Fundamental Resolution Equation

  • Page ID
    72012
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \[\mathrm{R_S = \dfrac{2(t_2-t_1)}{W_1 + W_2}}\tag{1}\]

    \[\mathrm{W_1 \cong W_2}\]

    \[\mathrm{W = 4\sigma}\]

    \[\mathrm{R_S = \dfrac{2(t_2-t_1)}{8\sigma_2} = \dfrac{t_2-t_1}{4\sigma_2}}\tag{2}\]

    \[\mathrm{N = \left(\dfrac{t_2}{\sigma_2} \right )^2 \hspace{60px} \sigma_2 = \dfrac{t_2}{\sqrt{N}}}\]

    \[\mathrm{R_S = \dfrac{t_2-t_1}{4\left( \dfrac{t_2}{\sqrt{N}}\right )}}\tag{3}\]

    \[\mathrm{R_S = \left(\dfrac{\sqrt{N}}{4}\right )\left(\dfrac{t_2-t_1}{t_2}\right ) = \left(\dfrac{\sqrt{N}}{4} \right) \left(1 - \dfrac{t_1}{t_2} \right )}\tag{4}\]

    Write an expression for the fraction of material in the mobile phase (φM):

    \[\mathrm{\varphi_M = \dfrac{C_MV_M}{C_MV_M + C_SV_S}}\tag{5}\]

    \[\mathrm{\varphi_M = \dfrac{\dfrac{C_MV_M}{C_MV_M}}{\dfrac{C_MV_M}{C_MV_M} + \dfrac{C_SV_S}{C_MV_M}} = \dfrac{1}{1 + k'}}\tag{6}\]

    Express the average migration velocity of component 2:

    \[\mathrm{v_{S_2} = \varphi_M v}\tag{7}\]

    (where v is the mobile phase velocity)

    \[\mathrm{v_{S_2} = \dfrac{L}{t_2}\hspace{20px}(8) \hspace{60px} v = \dfrac{L}{t_0} \hspace{20px} (9)}\]

    \[\mathrm{\dfrac{L}{t_2} = \dfrac{L}{t_0}\varphi_M}\tag{10}\]

    \[\mathrm{t_2 = \dfrac{t_0}{\varphi_{M_2}} \hspace{60px} t_1 = \dfrac{t_0}{\varphi_{M_1}}}\tag{11}\]

    \[\mathrm{t_2 = \dfrac{t_0}{\left(\dfrac{1}{1+k_2'}\right)} \hspace{60px} t_1 = \dfrac{t_0}{\left(\dfrac{1}{1+k_1'}\right)}}\tag{12}\]

    \[\mathrm{t_2 = t_0(1+k_2') \hspace{60px} t_1=t_0(1+k_1')}\tag{13}\]

    \[\mathrm{\dfrac{t_1}{t_2} = \dfrac{t_0(1+k_1')}{t_0(1+k_2')} =\dfrac{1+k_1'}{1+k_2'}}\tag{14}\]

    Substitute (14) into (4):

    \[\mathrm{R_S = \left(\dfrac{\sqrt{N}}{4}\right) = \left(1 - \dfrac{1+k_1'}{1+k_2'}\right) }\tag{15}\]

    Consider the \(\mathrm{\left(1 - \dfrac{1+k_1'}{1+k_2'}\right) }\) term:

    \[\mathrm{\left(1 - \dfrac{1+k_1'}{1+k_2'}\right) =\dfrac{1+k_2'}{1+k_2'} - \dfrac{1+k_1'}{1+k_2'}}\tag{15a}\]

    \[\mathrm{=\dfrac{k_2' - k_1'}{1+k_2'}}\tag{15b}\]

    \[\mathrm{=\dfrac{k_1'\left( \dfrac{k_2'}{k_1'} - 1\right )}{1+k_2'}}\tag{15c}\]

    \[\mathrm{=\dfrac{\left(\dfrac{k_2'}{k_1'}\right)k_1'\left( \dfrac{k_2'}{k_1'} - 1\right )}{\left(\dfrac{k_2'}{k_1'}\right)(1+k_2')}
    = \dfrac{k_2'\left( \dfrac{k_2'}{k_1'} - 1\right )}{\left(\dfrac{k_2'}{k_1'}\right)(1+k_2')}}\tag{15d}\]

    \[\mathrm{=\left(\dfrac{k_2'}{1+k_2'}\right)\left(\dfrac{\dfrac{k_2'}{k_1'}-1}{\dfrac{k_2'}{k_1'}} \right )}\tag{15e}\]

    \[\mathrm{\alpha=\dfrac{k_2'}{k_1'}}\]

    \[\mathrm{=\left( \dfrac{k_2'}{1+k_2'}\right )\left(\dfrac{\alpha - 1}{\alpha}\right )}\tag{15f}\]

    Substitute (15f) into (15):

    \[\mathrm{R_S=\left( \dfrac{\sqrt{N}}{4}\right )\left(\dfrac{\alpha - 1}{\alpha}\right )\left(\dfrac{k_2'}{1+k_2'} \right )}\]

    Relationship to retention time:

    \[\mathrm{v_{S_2} = \dfrac{L}{t_2} \hspace{60px} t_2 = \dfrac{L}{v_{S_2}}}\]

    \[\mathrm{v_{S_2} = \varphi_M v = \left(\dfrac{1}{1+k_2'} \right )v}\tag{16}\]

    \[\mathrm{H = \dfrac{L}{N} \hspace{60px} L = HN}\]

    \[\mathrm{t_2 = \dfrac{HN(1 + k_2')}{v}}\tag{17}\]

    Rearrange the fundamental resolution equation to solve for N:

    \[\mathrm{N = 16{R_S}^2 \left( \dfrac{\alpha}{\alpha - 1}\right )^2 \left( \dfrac{1 + k_2'}{k_2'}\right )^2}\]

    \[\mathrm{t_2 = \left(\dfrac{16{R_S}^2H}{v}\right ) \left( \dfrac{\alpha}{\alpha - 1}\right )^2 \left( \dfrac{(1 + k_2')^3}{(k_2')^2}\right )}\tag{18}\]


    This page titled Appendix 1: Derivation of the Fundamental Resolution Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Wenzel via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?