Skip to main content
Chemistry LibreTexts

Crystallography in a Nutshell (Ripoll and Cano)

  • Page ID
    352418
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The discovery of X-rays in the late 19th century completely transformed the old field of Crystallography, which previously studied the morphology of minerals. The interaction of X-rays with crystals, discovered in the early 20th century, showed us that X-rays are electromagnetic waves with a wavelength of about 10 -10 meters and that the internal structure of crystals was regular, arranged in three-dimensional networks, with separations of that order. Since then, Crystallography has become a basic discipline of many branches of Science and particularly of Physics, Chemistry of condensed matter, Biology and Biomedicine.

    Structural knowledge obtained by Crystallography allows us to produce materials with predesigned properties, from catalyst for a chemical reaction of industrial interest, up to toothpaste, vitro ceramic plates, extremely hard materials for surgery use, or certain aircraft components, just to give some examples of small, or medium sized atomic or molecular materials.

    Moreover, as biomolecules are the machines of life, like mechanical machines with moving parts, they modify their structure in the course of performing their respective tasks. It would also be extremely illuminating to follow these modifications and see the motion of the moving parts in a movie. To make a film of a moving object, it is necessary to take many snapshots. Faster movement requires a shorter exposure time and a greater number of snapshots to avoid blurring the pictures. This is where the ultrashort duration of the FEL (free electron laser) pulses will ensure sharp, non-blurred pictures of very fast processes (European XFEL or CXFEL).

    Thumbnail: 3D depiction of electron density (blue) of a ligand (orange) bound to a binding site in a protein (yellow).[131] The electron density is obtained from experimental data, and the ligand is modeled into this electron density. (CC BY-SA 4.0; Theislikerice via Wikipedia)


    This page titled Crystallography in a Nutshell (Ripoll and Cano) is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Martín Martínez Ripoll & Félix Hernández Cano via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.