Skip to main content
[ "article:topic", "Author tag:Harvey", "authorname:harveyd", "showtoc:no", "license:ccbyncsa" ]
Chemistry LibreTexts

8.S: Gravimetric Methods (Summary)

  • Page ID
    70456
  • In a gravimetric analysis, a measurement of mass or a change in mass provides quantitative information about the analyte. The most common form of gravimetry uses a precipitation reaction to generate a product whose mass is proportional to the amount of analyte. In many cases the precipitate includes the analyte; however, an indirect analysis in which the analyte causes the precipitation of another compound also is possible. Precipitation gravimetric procedures must be carefully controlled to produce precipitates that are easy to filter, free from impurities, and of known stoichiometry.

    In volatilization gravimetry, thermal or chemical energy decomposes the sample containing the analyte. The mass of residue remaining after decomposition, the mass of volatile products collected with a suitable trap, or a change in mass due to the loss of volatile material are all gravimetric measurements.

    When the analyte is already present in a particulate form that is easy to separate from its matrix, then a particulate gravimetric analysis may be feasible. Examples include the determination of dissolved solids and the determination of fat in foods.

    8.5.1 Key Terms

    coagulation
    conservation of mass
    coprecipitate
    definitive technique
    digestion
    direct analysis
    electrogravimetry
    gravimetry
    homogeneous precipitation

    ignition
    inclusion
    indirect analysis
    occlusion
    particulate gravimetry
    peptization
    precipitant
    precipitation gravimetry

    quartz crystal microbalance
    relative supersaturation
    reprecipitation
    supernatant
    surface adsorbate
    thermogram
    thermogravimetry
    volatilization gravimetry

    References

    1. Smith, C. S.; Gnodi, M. T. translation of Biringuccio, V. Pirotechnia, MIT Press: Cambridge, MA, 1959.
    2. Valacárcel, M.; Ríos, A. Analyst 1995, 120, 2291–2297.
    3. (a) Moody, J. R.; Epstein, M. S. Spectrochim. Acta 1991, 46B, 1571–1575; (b) Epstein, M. S. Spectrochim. Acta 1991, 46B, 1583–1591.
    4. Von Weimarn, P. P. Chem. Revs. 1925, 2, 217–242.
    5. Bassett, J.; Denney, R. C.; Jeffery, G. H. Mendham. J. Vogel’s Textbook of Quantitative Inorganic Analysis, Longman: London, 4th Ed., 1981, p. 408.
    6. Gordon, L.; Salutsky, M. L.; Willard, H. H. Precipitation from Homogeneous Solution, Wiley: NY, 1959.
    7. Ward, R., ed., Non-Stoichiometric Compounds (Ad. Chem. Ser. 39), American Chemical Society: Washington, D. C., 1963.
    8. Method 4500-SO42– C and Method 4500-SO42– D as published in Standard Methods for the Examination of Waters and Wastewaters, 20th Ed., American Public Health Association: Washington, D. C., 1998.
    9. Jungreis, E. Spot Test Analysis; 2nd Ed., Wiley: New York, 1997.
    10. (a) Ward, M. D.; Buttry, D. A. Science 1990, 249, 1000–1007; (b) Grate, J. W.; Martin, S. J. ; White, R. M. Anal. Chem. 1993, 65, 940A–948A; (c) Grate, J. W.; Martin, S. J. ; White, R. M. Anal. Chem. 1993, 65, 987A–996A.
    11. Muratsugu, M.; Ohta, F.; Miya, Y.; Hosokawa, T.; Kurosawa, S.; Kamo, N.; Ikeda, H. Anal. Chem. 1993, 65, 2933–2937.
    12. Sinha, S. K.; Shome, S. C. Anal. Chim. Acta 1960, 24, 33–36.
    13. Adapted from Sorum, C. H.; Lagowski, J. J. Introduction to Semimicro Qualitative Analysis, Prentice-Hall: Englewood Cliffs, N. J., 5th Ed., 1977, p. 285.
    14. Grote, F. Z. Anal. Chem. 1941, 122, 395–398.
    15. Nawrocki, J.; Carr, P. W.; Annen, M. J.; Froelicher, S. Anal. Chim. Acta 1996, 327, 261–266.
    16. Fat Determination by SFE, ISCO, Inc. Lincoln, NE.
    17. Delumyea, R. D.; McCleary, D. L. J. Chem. Educ. 1993, 70, 172–173.18 Yao, S. F.; He, F. J. Nie, L. H. Anal. Chim. Acta 1992, 268, 311–314.