Skip to main content
Chemistry LibreTexts

17: Reference

  • Page ID
    306813
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    clipboard_ef9bb7801981cae5fdf4b791f91b96a1d.png

     

    Metric Prefixes

     
    Prefix Symbol Multiple Multiple
    Exa E 1018 1,000,000,000,000,000,000
    Peta P 1015 1,000,000,000,000,000
    Tera T 1012 1,000,000,000,000
    Giga G 109 1,000,000,000
    Mega M 106 1,000,000
    kilo k 103 1,000
    hecto h 102 100
    deka dk 101 10
    <base unit>   100 1
    deci d 10-1 0.1
    centi c 10-2 0.01
    milli m 10-3 0.001
    micro µ 10-6 0.000 001
    nano n 10-9 0.000 000 001
    pico p 10-12 0.000 000 000 001
    femto f 10-15 0.000 000 000 000 001
    atto a 10-18 0.000 000 000 000 000 001

     

    Polyatomic Ions

    The following is a list of selected, common polyatomic ion names & formulas.
    Ion Name Ion Formula
    ammonium NH4+
    cyanide CN-
    hydroxide OH-
    nitrate NO3-
    nitrite NO2-
    sulfate SO42-
    sulfite SO32-
    hydrogen sulfate (bisulfate) HSO4-
    carbonate CO32-
    hydrogen carbonate (bicarbonate) HCO3-
    phosphate PO43-
    hydrogen phosphate HPO42-
    dihydrogen phosphate H2PO4-
    permanganate MnO4-
    perchlorate ClO4-
    chlorate ClO3-
    chlorite ClO2-
    hypochlorite ClO-

     

    Gas Laws Summary

    Boyle’s Law – Pressure vs. Volume

    • Pressure and Volume are inversely proportional – as one increases, the other decreases by the same factor. \(P \propto 1/V\)
    • \( PV = k\) (a constant) (when T and n are held constant)
    • \(P_1 V_1 = P_2 V_2\)

     

    Charles’s Law – Volume vs. Temperature

    • Volume and Temperature (in Kelvin) are directly proportional – as one increases, the other increases by the same factor. \( V \propto T\)
    • \( \frac{V}{T} \) = constant (when P and n are held constant)
    • \(\frac{V_1}{T_1} = \frac{V_2}{P_2}\)

     

    Gay-Lussac’s Law – Pressure vs. Temperature

    • Pressure and Temperature are directly proportional. \( P \propto T\)
    • \( \frac{P}{T} \) = constant (when V and n are held constant)
    • \(\frac{P_1}{T_1} = \frac{P_2}{P_2}\)

     

    Combined Gas Law – Pressure, Temperature, and Volume

    • This combines the other three gas laws into a single ratio.
    • \( \frac{PV}{T} \) = constant (when n is held constant)
    • \( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \)

     

    Avogadro’s Law – Moles vs. Volumes

    • The number of moles of any gas is directly proportional to the volume of the sample. \( n \propto V\)
    • \( \frac{n}{V}\) = constant (when P and T are held constant)
    • \( \frac{n_1}{V_1} = \frac{n_2}{V_2} \)
    • At STP, 1.00 mole of a gas occupies 22.4 Liters.

     

    Ideal Gas Law

    • The ideal gas law relates all of these different properties of a gas – pressure (P), volume (V), temperature (T in Kelvin), and number of moles (n) into a single equation that can be used to describe any ideal gas sample under any conditions.
    • \( PV = nRT\)
    • R is the ideal gas constant. There are different values for R, depending on what units the various properties are expressed in. Common R values are given at the bottom of the other side.

     

    Standard Temperature and Pressure (STP)

    • Standard Temperature = 0 °C = 273.15 K
    • Standard Pressure = 1.000 atm = 760.0 mmHg = 101300 Pa = 101.3 kPa

     

    Values of the Ideal Gas Constant (R)

    • R = 0.08206 \( \frac{\text{L atm}}{\text{mol K}} \)
    • R = 8314 \( \frac{\text{L Pa}}{\text{mol K}} \)
    • R = 62.37 \( \frac{\text{L mmHg}}{\text{mol K}} \)
    • R = 8.314 \( \frac{\text{L kPa}}{\text{mol K}} \) = 8.314 \( \frac{\text{J}}{\text{mol K}} \)

     

     

    Property Conversion Factor
    Mass

    2.205 lb = 1 kg

    1 lb = 16 oz

    Volume

    1.06 qt = 1 L

    1 qt = 4 cups

    1 fl oz = 29.6 mL

    1 tsp = 5 mL

    Length

    1 mi = 1.6 km

    1 mi = 5280 ft

    1 in = 2.54 cm

    1 ft = 12 in.

    Energy

    1 cal = 4.187 J

    1 Calorie = 1000 calories

     

     

    Radiation Activity Units

    • 1 becquerel (Bq) = 1 disintegration per second
    • 1 Curie (Ci) = 3.7 x 1010 disintegration per second
    • 1 Ci = 1000 mCi
    • 1 Ci = 1,000,000 µCi

     

    Solutions

    • Concentration = \( \frac{\text{amount of solute}}{\text{amount of solution}} \)
    • Molarity, M = \( \frac{\text{mole solute}}{\text{L solution}} \)
    • % concentration = \( \frac{\text{parts of solute}}{\text{100 parts of solution}} \)
    • Dilution Factor = \( \frac{V_f}{V_i} \)
    • % (m/v) = \( \frac{\text{g solute}}{\text{mL solution}} \times 100 \)
    • % (m/m) = \( \frac{\text{g solute}}{\text{g solution}} \times 100\)
    • % (v/v) = \( \frac{\text{mL solute}}{\text{mL solution}} \times 100 \)
    • \( C_{initial} \times V_{initial} = C_{final} \times V_{final}\)
    • ppm = \( \frac{\text{g solute}}{\text{mL solution}} \times 1,000,000\)
    • ppb = \( \frac{\text{g solute}}{\text{mL solution}} \times 1,000,000,000\)

     

    Calculating pH and pKa

    • pH = -log[H3O+]
    • [H3O+] = 10-pH
    • pKa = -log Ka

     

    Supplemental Notes: Naming

    In this exercise, you will practice naming and writing chemical formulas for many inorganic compounds, both ionic and molecular. Before beginning the exercise, you should carefully read all the sections of your text (or notes) on the names and formulas of ionic compounds, simple covalent compounds, and acids. The following is a brief summary of the Nomenclature rules for each of these types of compounds.

     

    Ionic Compounds

    • Composed of metal cations and non-metal anions, or, of polyatomic ions.
    • Names and formulas always start with the positively charged cation.
    • Ions are combined in ratios so that the final ionic compound is neutral.
    • Never use prefixes in the names of ionic compounds. The cation name is simply combined with the anion name only.
    • If the cation is capable of having more than one possible charge, the cation charge is included in the name as a Roman numeral in brackets (Stock system).
    • Several ion names, charges and formulas are provided in the following tables. They must be memorized as soon as possible.

     

    Names of selected cations and anions (names are in alphabetical order)
    Al3+ Aluminum Pb2+ Lead(II); Plumbous
    NH4+  Ammonium Pb4+ Lead(IV); Plumbic
    As3+ Arsenic(III) Li+ Lithium
    Ba2+ Barium Mg2+ Magnesium
    Cd2+ Cadmium Mn2+ Manganese(II)
    Ca2+ Calcium Mn4+ Manganese(IV)
    Cr2+ Chromium(II) Hg22+ Mercury(I); Mercurous
    Cr3+ Chromium(III) Hg2+ Mercury(II); Mercuric
    Cr6+ Chromium(VI) Ni2+ Nickel(II); Nickelous
    Co2+ Cobalt(II); Cobaltous K+ Potassium
    Co3+ Cobalt(III); Cobaltic Ag+ Silver
    Cu+ Copper(I); Cuprous Na+ Sodium
    Cu2+ Copper(II); Cupric Rb+ Rubidium
    Au3+ Gold(III); Auric Sr2+ Strontium
    H+ Hydrogen Sn2+ Tin(II); Stannous
    Fe2+ Iron(II); Ferrous Sn4+ Tin(IV); Stannic
    Fe3+ Iron(III); Ferric Zn2+ Zinc
    C2H3O2- Acetate I- Iodide
    AsO43- Arsenate IO4- Periodate
    BO33- Borate MoO42- Molybdate
    B4O72- Tetraborate N3- Nitride
    Br- Bromide NO2- Nitrite
    BrO- Hypobromite NO3- Nitrate
    BrO3- Bromate C2O42- Oxalate
    CO32- Carbonate O2- Oxide
    HCO3- Bicarbonate; Hydrogen carbonate O22- Peroxide
    Cl- Chloride MnO4- Permanganate
    ClO- Hypochlorite P3- Phosphide
    ClO2- Chlorite PO43- Phosphate
    ClO3- Chlorate HPO42- Hydrogen phosphate
    ClO4- Perchlorate H2PO42- Dihydrogen phosphate
    CrO42- Chromate Se2- Selenide
    Cr2O72- Dichromate S2- Sulfide
    C6H5O72- Citrate SO32- Sulfite
    CN- Cyanide SO42- Sulfate
    F- Fluoride HSO3- Bisulfite; Hydrogen sulfite
    H- Hydride HSO4- Bisulfate; Hydrogen sulfate
    OH- Hydroxide S2O32- Thiosulfate
        SCN- Thiocyanate

     

    Examples

    • K2S
      • 2 K+ cations and 1 S2- anion
      • potassium sulfide
    • FeCl3
      • 1 Fe3+ cation and 3 Clanions
      • iron(III) chloride, or ferric chloride
    • Mg3(PO4)2
      • 3 Mg+2 cations and 2 PO4 3- anions
      • magnesium phosphate

     

    Simple Covalent (Molecular) Compounds

    • Composed of non-metal atoms only.
    • The more metallic non-metal is written first.
    • Prefixes are used in the name to indicate the number of each atom present. A list of prefixes 1-10 (and 12) is provided below, which must be memorized.
    • The prefix “mono” is dropped if there is only one of the first element.
    • The name of the second element always ends in __ide.

     

    Prefixes for Covalent Compounds
    1 Mono
    2 Di
    3 Tri
    4 Tetra
    5 Penta
    6 Hexa
    7 Hepta
    8 Octa
    9 Nona
    10 Deca
    12 Dodeca

     

    Examples

    • P4S3
      • 4 P atoms and 3 S atoms
      • tetraphosphorus trisulfide
    • N2O
      • 2 N atoms and 1 O atom
      • dinitrogen monoxide
    • BrCl5
      • 1 Br atom and 5 Cl atoms
      • bromine pentachloride

     

    Acids

    • Composed of hydrogen cations and non-metal anions or polyatomic anions.
    • H always leads the formula.
    • Acids are in the aqueous state.
    • Ions are combined in ratios so that the final acid is neutral.
    • The acid name depends on the name of the anion involved:

    clipboard_e845ef54737107f29499618f14e2ea820.png

    Examples

    • HBr (aq)
      • 1 H+1 cation and 1 Br-1 anion (bromide)
      • hydrobromic acid
    • HNO3 (aq)
      • 1 H+1 cation and 1 NO3 -1 anion (nitrate)
      • nitric acid
    • H2SO3 (aq)
      • 2 H+1 cations and 1 SO3 -2 anion (sulfite)
      • sulfurous acid

     

    Hydrates

    • Hydrates are solid substances that also contain water molecules in their crystal structure.
    • The number of water molecules for each formula unit is fixed.
    • The formula is written the same as any other compound, but then we add a dot (•), (note that this is NOT a multiplication sign!) followed by the number of water molecules per ionic formula unit and the symbol H2O.
    • The name is the same as for any other compound, but we add the word “hydrate” at the end with a Latin prefix to indicate the number of water molecules per ionic formula unit.

    Examples

    • CuSO4 • 5 H2O
      • 1 Cu2+ ion, 1 SO4 -2 ion, and 5 water molecules
      • Copper(II) sulfate pentahydrate
    • Sodium carbonate decahydrate
      • Na+ ion(s), CO3 -2 ions(s), and 10 water molecules
      • Na2CO3 • 10 H2O

     

     


    17: Reference is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?