Work From a Voltaic Cell
- Page ID
- 3101
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Chemical Concept Demonstrated
- Electrochemical work with voltaic or galvanic cells
Demonstration
The beaker contains a solution of H2SO4.
A copper wire electrode along with a magnesium electrode are inserted into the solution. The wires are connected to a flashbulb. Alternately, a normal light bulb may be used. |
![]() |
Observations
The flashbulb is set off.
Explanation (including important chemical equations)
The standard-state reduction potentials are:
Mg 2+ (aq) + 2 e- ---> Mg (s) | Eo = -2.37 V |
Cu 2+ (aq) + 2 e- ---> Cu (s) | Eo = 0.34 V |
The reaction that has an overall positive cell potential is therefore
Mg (s) ---> Mg 2+ (aq) + 2 e- | Eo = 2.37 V |
2 H + (aq) + 2 e - ---> H2 (g) | Eo = 0.00 V |
Mg (s) + 2 H + (aq) ---> Mg 2+ (aq) + H2 (g) | Eo cell = 2.37 V |
Electrons flow from the magnesium electrode to the copper electrode through the external circuit, setting off the flashbulb.