Skills to Develop

• Write Lewis symbols for neutral atoms and ions
• Draw Lewis structures depicting the bonding in simple molecules
• Understand the proper use of the octet rule to predict bonding in simple molecules

Thus far, we have discussed the various types of bonds that form between atoms and/or ions. In all cases, these bonds involve the sharing or transfer of valence shell electrons between atoms. In this section, we will explore the typical method for depicting valence shell electrons and chemical bonds, namely Lewis symbols and Lewis structures.

Lewis Symbols

We use Lewis symbols to describe valence electron configurations of atoms and monatomic ions. A Lewis symbol consists of an elemental symbol surrounded by one dot for each of its valence electrons:

\[ \cdot \text{Ca} \cdot \]

Figure \((\PageIndex{1})\) shows the Lewis symbols for the elements of the third period of the periodic table. Electron dots are typically arranged in four pairs located on the four "sides" of the atomic symbol.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Electronic Configuration</th>
<th>Lewis Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium</td>
<td>[He]2s^22p^6</td>
<td>Na⁺</td>
</tr>
<tr>
<td>magnesium</td>
<td>[Ne]3s^23p^6</td>
<td>Mg⁺</td>
</tr>
<tr>
<td>aluminum</td>
<td>[Ar]4s^23d^10</td>
<td>Al⁺</td>
</tr>
<tr>
<td>silicon</td>
<td>[Ar]4s^23d^10</td>
<td>Si⁺</td>
</tr>
<tr>
<td>phosphorus</td>
<td>[Ar]4s^23d^10</td>
<td>P⁺</td>
</tr>
<tr>
<td>sulfur</td>
<td>[Ar]4s^23d^10</td>
<td>S⁺</td>
</tr>
<tr>
<td>chlorine</td>
<td>[Ar]4s^23d^10</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>argon</td>
<td>[Ar]4s^23d^10</td>
<td>Ar⁻</td>
</tr>
</tbody>
</table>

\[ \PageIndex{1}: \text{Lewis symbols illustrating the number of valence electrons for each element in the third period of the periodic table.} \]

Lewis symbols can be used to illustrate the formation of cations from atoms, as shown here for sodium and calcium:

Likewise, they can be used to show the formation of anions from atoms, as shown here for chlorine and sulfur:

\[ \PageIndex{2}: \text{Figure demonstrating the use of Lewis symbols to show the transfer of electrons during the formation of ionic compounds.} \]
Figure \(\PageIndex{2}\): Cations are formed when atoms lose electrons, represented by fewer Lewis dots, whereas anions are formed by atoms gaining electrons. The total number of electrons does not change.

Lewis Structures

We also use Lewis symbols to indicate the formation of covalent bonds, which are shown in Lewis structures, drawings that describe the bonding in molecules and polyatomic ions. For example, when two chlorine atoms form a chlorine molecule, they share one pair of electrons:

\[
\begin{align*}
\text{Cl} & \cdot \ + \ + \ \text{Cl} \cdot \\
\text{chlorine atoms} & \quad \rightarrow \quad \text{Cl} \cdot \text{Cl} \\
\text{chlorine molecule}
\end{align*}
\]

The Lewis structure indicates that each Cl atom has three pairs of electrons that are not used in bonding (called lone pairs) and one shared pair of electrons (written between the atoms). A dash (or line) is usually used to indicate a shared pair of electrons:

\[
\begin{align*}
\text{H} & \quad \cdots \quad \text{H} \\
\text{calcium fluoride (calcium ion and two fluoride ions)}
\end{align*}
\]

In the Lewis model, a single shared pair of electrons constitutes a single bond. Each Cl atom interacts with eight valence electrons total: the six in the lone pairs and the two in the single bond.

The Octet Rule

The other halogen molecules (F\(_2\), Br\(_2\), I\(_2\), and At\(_2\)) form bonds like those in the chlorine molecule: one single bond between atoms and three lone pairs of electrons per atom. This allows each halogen atom to have a noble gas electron configuration, which corresponds to eight valence electrons. The tendency of main group atoms to form enough bonds to obtain eight valence electrons is known as the octet rule.

The number of bonds that an atom can form can often be predicted from the number of electrons needed to reach an octet (eight valence electrons); this is especially true of the nonmetals of the second period of the periodic table (C, N,
O, and F). For example, each atom of a group 14 element has four electrons in its outermost shell and therefore requires four more electrons to reach an octet. These four electrons can be gained by forming four covalent bonds, as illustrated here for carbon in CCl₄ (carbon tetrachloride) and silicon in SiH₄ (silane). Because hydrogen only needs two electrons to fill its valence shell, it is an exception to the octet rule and only needs to form one bond. The transition elements and inner transition elements also do not follow the octet rule since they have d and f electrons involved in their valence shells.

![Carbon Tetrachloride and Silane](image)

Group 15 elements such as nitrogen have five valence electrons in the atomic Lewis symbol: one lone pair and three unpaired electrons. To obtain an octet, these atoms form three covalent bonds, as in NH₃ (ammonia). Oxygen and other atoms in group 16 obtain an octet by forming two covalent bonds:

![Ammonia, Water, Hydrogen Fluoride](image)

### Multiple Bonds

As previously mentioned, when a pair of atoms shares one pair of electrons, we call this a single bond. However, a pair of atoms may need to share more than one pair of electrons in order to achieve the requisite octet. A **double bond** forms when two pairs of electrons are shared between a pair of atoms, as between the carbon and oxygen atoms in CH₂O (formaldehyde) and between the two carbon atoms in C₂H₄ (ethylene):

![Formaldehyde and Ethylene](image)

A **triple bond** forms when three electron pairs are shared by a pair of atoms, as in carbon monoxide (CO) and the cyanide ion (CN⁻):

![Carbon Monoxide and Cyanide Ion](image)
Writing Lewis Structures with the Octet Rule

For very simple molecules and molecular ions, we can write the Lewis structures by merely pairing up the unpaired electrons on the constituent atoms. See these examples:

\[
\begin{align*}
\text{H} \cdot + \quad \text{Br} \cdot & \quad \rightarrow \quad \text{H} : \text{Br} : \\
2\text{H} \cdot + \quad \text{S} \cdot & \quad \rightarrow \quad \text{H} : \text{S} : \\
\text{N} \cdot + \quad \text{N} \cdot & \quad \rightarrow \quad \text{N} : \text{N} : \\
\end{align*}
\]

For more complicated molecules and molecular ions, it is helpful to follow the step-by-step procedure outlined here:

1. Determine the total number of valence (outer shell) electrons among all the atoms. For cations, subtract one electron for each positive charge. For anions, add one electron for each negative charge.

2. Draw a skeleton structure of the molecule or ion, arranging the atoms around a central atom. (Generally, the least electronegative element should be placed in the center.) Connect each atom to the central atom with a single bond (one electron pair). Subtract the number of bonding electrons from the total.

3. Distribute the remaining electrons as lone pairs on the terminal atoms (except hydrogen), completing an octet around each atom.

4. Place all remaining electrons on the central atom.

5. Rearrange the electrons of the outer atoms to make multiple bonds with the central atom in order to obtain octets wherever possible.

Let us determine the Lewis structures of SiH\(_4\), \(\text{CHO}_2^-\), NO\(^+\), and OF\(_2\) as examples in following this procedure:

1. Determine the total number of valence (outer shell) electrons in the molecule or ion.

   - For a molecule, we add the number of valence electrons on each atom in the molecule:
     \[
     \begin{align*}
     &\phantom{+}\text{SiH}_4 \\
     &\phantom{+}\text{Si: 4 valence electrons/atom } \times \text{1 atom} = \text{4} \\
     &\underline{+\text{H: 1 valence electron/atom } \times \text{4 atoms} = \text{4}} \\
     &\hspace{271px}= \text{8 valence electrons}
     \end{align*}
     \]

   - For a negative ion, such as \(\text{CHO}_2^-\), we add the number of valence electrons on the atoms to the number of negative charges on the ion (one electron is gained for each single negative charge):
     \[
     \begin{align*}
     &\text{\textbf{(CHO2-)}} \\
     &\text{C: 4 valence electrons/atom } \times \text{1 atom} = \text{4} \\
     &\underline{+\text{H: 1 valence electron/atom } \times \text{4 atoms} = \text{4}} \\
     &\hspace{271px}= \text{18 valence electrons}
     \end{align*}
     \]

   - For a positive ion, such as NO\(^+\), we add the number of valence electrons on the atoms in the ion and then subtract the number of positive charges on the ion (one electron is lost for each single positive charge) from the total number of valence electrons:
     \[
     \begin{align*}
     &\text{\textbf{(NO+)}} \\
     &\text{N: 5 valence electrons/atom } \times \text{1 atom} = \text{5} \\
     &\underline{+\text{O: 6 valence electron/atom } \times \text{1 atom}} \\
     &\hspace{264px}= \text{18 valence electrons)}
     \end{align*}
     \]
Since \( \text{OF}_2 \) is a neutral molecule, we simply add the number of valence electrons:

\[
\begin{align*}
\text{O: } & \ 6 \ \text{valence electrons/atom} \times 1 \ \text{atom} \hspace{10px} = 6 \\
\text{F: } & \ 7 \ \text{valence electrons/atom} \times 2 \ \text{atoms} = 14
\end{align*}
\]

\[
\text{= 20 valence electrons}
\]

2. Draw a skeleton structure of the molecule or ion, arranging the atoms around a central atom and connecting each atom to the central atom with a single (one electron pair) bond. (Note that we denote ions with brackets around the structure, indicating the charge outside the brackets:)

\[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\begin{array}{c}
\text{N} \\
\text{O}
\end{array}
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{F}
\end{array}
\]

3. Distribute the remaining electrons as lone pairs on the terminal atoms (except hydrogen) to complete their valence shells with an octet of electrons.

• There are no remaining electrons on \( \text{SiH}_4 \), so it is unchanged:

\[
\begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\begin{array}{c}
\text{Si} \\
\text{H}
\end{array}
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\begin{array}{c}
\text{Si} \\
\text{H}
\end{array}
\]

4. Place all remaining electrons on the central atom.

• For \( \text{SiH}_4 \), \( \text{CHO}_2^- \), and \( \text{NO}^+ \), there are no remaining electrons; we already placed all of the electrons determined in Step 1.

• For \( \text{OF}_2 \), we had 16 electrons remaining in Step 3, and we placed 12, leaving 4 to be placed on the central atom:

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{F}
\end{array}
\]

5. Rearrange the electrons of the outer atoms to make multiple bonds with the central atom in order to obtain octets wherever possible.

• \( \text{SiH}_4 \): Si already has an octet, so nothing needs to be done.

• \( \text{CHO}_2^- \): We have distributed the valence electrons as lone pairs on the oxygen atoms, but the carbon atom lacks an octet:
• NO⁺: For this ion, we added eight outer electrons, but neither atom has an octet. We cannot add any more electrons since we have already used the total that we found in Step 1, so we must move electrons to form a multiple bond:

\[
\left[ \begin{array}{c} \vdots \\ \overset{+}{\text{O}} \\ \vdots \\ \text{H} \\ \text{C} \end{array} \right] \quad \text{gives} \quad \left[ \begin{array}{c} \vdots \\ \overset{+}{\text{O}} \\ \vdots \\ \text{H} \\ \text{C} \end{array} \right]
\]

• This still does not produce an octet, so we must move another pair, forming a triple bond:

\[
\left[ \begin{array}{c} \vdots \\ \overset{+}{\text{O}} \\ \vdots \\ \text{H} \\ \text{C} \end{array} \right] \quad \text{gives} \quad \left[ \begin{array}{c} \vdots \\ \overset{+}{\text{O}} \\ \vdots \\ \text{H} \\ \text{C} \end{array} \right]
\]

In OF₂, each atom has an octet as drawn, so nothing changes.

Example \(\PageIndex{1}\): Writing Lewis Structures

NASA’s Cassini-Huygens mission detected a large cloud of toxic hydrogen cyanide (HCN) on Titan, one of Saturn’s moons. Titan also contains ethane (H₃CCH₃), acetylene (HCCH), and ammonia (NH₃). What are the Lewis structures of these molecules?

**Solution**

*Calculate the number of valence electrons.*

- HCN: \((1 \times 1) + (4 \times 1) + (5 \times 1) = 10\)
- H₃CCH₃: \((1 \times 3) + (2 \times 4) + (1 \times 3) = 14\)
- HCCH: \((1 \times 1) + (2 \times 4) + (1 \times 1) = 10\)
- NH₃: \((5 \times 1) + (3 \times 1) = 8\)

*Draw a skeleton and connect the atoms with single bonds.* Remember that H is never a central atom:

*Where needed, distribute electrons to the terminal atoms:*

- HCN: six electrons placed on N
- H₃CCH₃: no electrons remain
- HCCH: no terminal atoms capable of accepting electrons
- NH₃: no terminal atoms capable of accepting electrons

Where needed, place remaining electrons on the central atom:

- HCN: no electrons remain
- H₃CCH₃: no electrons remain
- HCCH: four electrons placed on carbon
- NH₃: two electrons placed on nitrogen

Where needed, rearrange electrons to form multiple bonds in order to obtain an octet on each atom:

- HCN: form two more C–N bonds
- H₃CCH₃: all atoms have the correct number of electrons
- HCCH: form a triple bond between the two carbon atoms
- NH₃: all atoms have the correct number of electrons

Exercise \( \PageIndex{1} \) \)

Both carbon monoxide, CO, and carbon dioxide, CO₂, are products of the combustion of fossil fuels. Both of these gases also cause problems: CO is toxic and CO₂ has been implicated in global climate change. What are the Lewis structures of these two molecules?

**Answer**

\[ \text{C}≡\text{O:} \quad \text{O}≡\text{C}≡\text{O:} \]

Fullerene Chemistry

Carbon soot has been known to man since prehistoric times, but it was not until fairly recently that the molecular structure of the main component of soot was discovered. In 1996, the Nobel Prize in Chemistry was awarded to Richard Smalley, Robert Curl, and Harold Kroto for their work in discovering a new form of carbon, the C₆₀ buckminsterfullerene molecule. An entire class of compounds, including spheres and tubes of various shapes, were discovered based on C₆₀. This type of molecule, called a fullerene, consists of a complex network of single- and double-bonded carbon atoms arranged in such a way that each carbon atom obtains a full octet of electrons. Because of their size and shape, fullerenes can encapsulate other molecules, so they have shown potential in various applications from hydrogen storage to targeted drug delivery.
systems. They also possess unique electronic and optical properties that have been put to good use in solar powered devices and chemical sensors.

**Exceptions to the Octet Rule**

Many covalent molecules have central atoms that do not have eight electrons in their Lewis structures. These molecules fall into three categories:

- Odd-electron molecules have an odd number of valence electrons, and therefore have an unpaired electron.
- Electron-deficient molecules have a central atom that has fewer electrons than needed for a noble gas configuration.
- Hypervalent molecules have a central atom that has more electrons than needed for a noble gas configuration.

**Odd-electron Molecules**

We call molecules that contain an odd number of electrons free radicals. Nitric oxide, NO, is an example of an odd-electron molecule; it is produced in internal combustion engines when oxygen and nitrogen react at high temperatures.

To draw the Lewis structure for an odd-electron molecule like NO, we follow the same five steps we would for other molecules, but with a few minor changes:

1. **Determine the total number of valence (outer shell) electrons.** The sum of the valence electrons is $5$ (from N) + $6$ (from O) = $11$. The odd number immediately tells us that we have a free radical, so we know that not every atom can have eight electrons in its valence shell.

2. **Draw a skeleton structure of the molecule.** We can easily draw a skeleton with an N–O single bond: N–O

3. **Distribute the remaining electrons as lone pairs on the terminal atoms.** In this case, there is no central atom, so we distribute the electrons around both atoms. We give eight electrons to the more electronegative atom in these situations; thus oxygen has the filled valence shell:

   ![Lewis structure of NO](image)

4. **Place all remaining electrons on the central atom.** Since there are no remaining electrons, this step does not apply.

5. **Rearrange the electrons to make multiple bonds with the central atom in order to obtain octets wherever possible.** We know that an odd-electron molecule cannot have an octet for every atom, but we want to get each atom as close to an octet as possible. In this case, nitrogen has only five electrons around it. To move closer to an octet for nitrogen, we take one of the lone pairs from oxygen and use it to form a NO double bond. (We cannot take another lone pair of electrons on oxygen and form a triple bond because nitrogen would then have nine electrons.)

   ![Lewis structure of NO](image)
Electron-deficient Molecules

We will also encounter a few molecules that contain central atoms that do not have a filled valence shell. Generally, these are molecules with central atoms from groups 2 and 13 and outer atoms that are hydrogen or other atoms that do not form multiple bonds. For example, in the Lewis structures of beryllium dihydride, BeH₂, and boron trifluoride, BF₃, the beryllium and boron atoms each have only four and six electrons, respectively. It is possible to draw a structure with a double bond between a boron atom and a fluorine atom in BF₃, satisfying the octet rule, but experimental evidence indicates the bond lengths are closer to that expected for B–F single bonds. This suggests the best Lewis structure has three B–F single bonds and an electron deficient boron. The reactivity of the compound is also consistent with an electron deficient boron. However, the B–F bonds are slightly shorter than what is actually expected for B–F single bonds, indicating that some double bond character is found in the actual molecule.

![Lewis structure of BeH₂ and BF₃](image)

An atom like the boron atom in BF₃, which does not have eight electrons, is very reactive. It readily combines with a molecule containing an atom with a lone pair of electrons. For example, NH₃ reacts with BF₃ because the lone pair on nitrogen can be shared with the boron atom:

![Lewis structure of NH₃ reacting with BF₃](image)

Hypervalent Molecules

Elements in the second period of the periodic table (n = 2) can accommodate only eight electrons in their valence shell orbitals. Elements in the third and higher periods (n ≥ 3), however, can often share more than four pairs of electrons with other atoms. Molecules formed from these elements are sometimes called hypervalent molecules because they are able to expand the valence shell. Figure 3 shows the Lewis structures for two hypervalent molecules, PCl₅ and SF₆.

![Lewis structures of PCl₅ and SF₆](image)

Figure 3: In PCl₅, the central atom phosphorus shares five pairs of electrons. In SF₆, sulfur shares six pairs of electrons.
In some hypervalent molecules, such as IF$_5$ and XeF$_4$, some of the electrons in the outer shell of the central atom are lone pairs:

![Lewis structures of IF$_5$ and XeF$_4$]

When we write the Lewis structures for these molecules, we find that we have electrons left over after filling the valence shells of the outer atoms with eight electrons. These additional electrons must be assigned to the central atom.

Why can atoms beyond the second row of the periodic table form hypervalent molecules? One explanation is that the presence of available $d$ orbitals in larger atoms allows these atoms to make more bonds; however, more modern chemical calculations have shown that $d$ orbitals are not significantly involved in hypervalent bonding. More important is simply the larger size of atoms beyond the second row, which allows more atoms to fit spatially around the central atom.

Example \(\PageIndex{2}\): Octet Rule Violations

Xenon is a noble gas, but it forms a number of stable compounds. We examined XeF$_4$ earlier. What are the Lewis structures of XeF$_2$ and XeF$_6$?

Solution

We can draw the Lewis structure of any covalent molecule by following the six steps discussed earlier. In this case, we can condense the last few steps, since not all of them apply.

**Step 1: Calculate the number of valence electrons:**

- XeF$_2$: $8 + (2 \times 7) = 22$
- XeF$_6$: $8 + (6 \times 7) = 50$

**Step 2: Draw a skeleton joining the atoms by single bonds.** Xenon will be the central atom because fluorine cannot be a central atom:

![Lewis structures of XeF$_2$ and XeF$_6$]

**Step 3: Distribute the remaining electrons.**

XeF$_2$: We place three lone pairs of electrons around each F atom, accounting for 12 electrons and giving each F atom 8 electrons. Thus, six electrons (three lone pairs) remain. These lone pairs must be placed on the Xe atom. This is
acceptable because Xe atoms have empty valence shell d orbitals and can accommodate more than eight electrons. The Lewis structure of XeF₂ shows two bonding pairs and three lone pairs of electrons around the Xe atom:

\[
\begin{align*}
\text{Xe} & : \text{F} \equiv \text{F} \\
\text{F} & \equiv \text{Xe} \equiv \text{F}
\end{align*}
\]

XeF₆: We place three lone pairs of electrons around each F atom, accounting for 36 electrons. Two electrons remain, and this lone pair is placed on the Xe atom:

Exercise \(\PageIndex{2}\)

The halogens form a class of compounds called the interhalogens, in which halogen atoms covalently bond to each other. Write the Lewis structures for the interhalogens BrCl₃ and ICl₄⁻.

Answer

Summary

Valence electronic structures can be visualized by drawing Lewis symbols (for atoms and monatomic ions) and Lewis structures (for molecules and polyatomic ions). Lone pairs, unpaired electrons, and single, double, or triple bonds are used to indicate where the valence electrons are located around each atom in a Lewis structure. Most structures—especially those containing second row elements—obey the octet rule, in which every atom (except H) is surrounded by eight electrons. Exceptions to the octet rule occur for odd-electron molecules (free radicals), electron-deficient molecules, and hypervalent molecules.

Contributors

- Paul Flowers (University of North Carolina - Pembroke), Klaus Theopold (University of Delaware) and Richard Langley (Stephen F. Austin State University) with contributing authors. Textbook content produced by OpenStax
• Anna Christianson (Bellarmine University)