2. **4.1: Experiencing Atoms at Tiburon**
3. **4.2: Indivisible: The Atomic Theory**
4. **4.3: The Nuclear Atom**
5. **4.4: The Properties of Protons, Neutrons, and Electrons**
6. **4.5: Elements: Defined by Their Numbers of Protons**
7. **4.6: Looking for Patterns: The Periodic Law and the Periodic Table**
8. **4.7: Ions: Losing and Gaining Electrons**
9. **4.8: Isotopes: When the Number of Neutrons Varies**
10. **4.9: Atomic Mass: The Average Mass of an Element’s Atoms**
 • **Chapter 5**
 1. Chapter 5: Molecules and Compounds
 2. **5.1: Sugar and Salt**
 3. **5.2: Compounds Display Constant Composition**
4. **5.3: Chemical Formulas: How to Represent Compounds**
5. **5.4: A Molecular View of Elements and Compounds**
6. **5.5: Writing Formulas for Ionic Compounds**
7. **5.6: Nomenclature: Naming Compounds**
8. **5.7: Naming Ionic Compounds**
9. **5.8: Naming Molecular Compounds**
10. **5.9: Naming Acids**
11. **5.10: Nomenclature Summary**
12. **5.11: Formula Mass: The Mass of a Molecule or Formula Unit**
 • **Chapter 6**
 1. Chapter 6: Chemical Composition
 2. **6.1: How Much Sodium?**
 3. **6.2: Counting Nails by the Pound**
 4. **6.3: Counting Atoms by the Gram**
 5. **6.4: Counting Molecules by the Gram**
6. **6.5: Chemical Formulas as Conversion Factors**
7. **6.6: Mass Percent Composition of Compounds**
8. **6.7: Mass Percent Composition from a Chemical Formula**
9. **6.8: Calculating Empirical Formulas for Compounds**
10. **6.9: Calculating Molecular Formulas for Compounds**
 • **Chapter 7**
 1. Chapter 7: Chemical Reactions
2. **7.1: Grade School Volcanoes, Automobiles, and Laundry Detergents**
3. **7.2: Evidence of a Chemical Reaction**
4. **7.3: The Chemical Equation**
5. 7.4: How to Write Balanced Chemical Equations
6. 7.5: Aqueous Solutions and Solubility: Compounds Dissolved in Water
7. 7.6: Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid
8. 7.7: Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations
9. 7.8: Acid–Base and Gas Evolution Reactions
10. 7.9: Oxidation–Reduction Reactions
11. 7.10: Classifying Chemical Reactions
12. 7.11: The Activity Series

Chapter 8
1. Chapter 8: Quantities in Chemical Reactions
2. 8.1: Climate Change: Too Much Carbon Dioxide
3. 8.2: Stoichiometry
4. 8.3: Making Molecules: Mole-to-Mole Conversions
5. 8.4: Making Molecules: Mass-to-Mass Conversions
6. 8.5: Limiting Reactant, Theoretical Yield, and Percent Yield
7. 8.6: Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants
8. 8.7: Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

Chapter 9
1. Chapter 9: Electrons in Atoms and the Periodic Table
2. 9.1: Blimps, Balloons, and Models of the Atom
3. 9.2: Light: Electromagnetic Radiation
4. 9.3: The Electromagnetic Spectrum
5. 9.4: The Bohr Model: Atoms with Orbits
6. 9.5: The Quantum-Mechanical Model: Atoms with Orbitals
7. 9.6: Quantum-Mechanical Orbitals and Electron Configurations
8. 9.7: Electron Configurations and the Periodic Table
9. 9.8: The Explanatory Power of the Quantum-Mechanical Model
10. 9.9: Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character

Chapter 10
1. Chapter 10: Chemical Bonding
2. 10.1: Bonding Models and AIDS Drugs
3. 10.2: Representing Valence Electrons with Dots
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don't Mix
Chapter 11: Gases

1. 11.1: Extra-Long Straws
2. 11.2: Kinetic Molecular Theory: A Model for Gases
3. 11.3: Pressure: The Result of Constant Molecular Collisions
4. 11.4: Boyle’s Law: Pressure and Volume
5. 11.5: Charles’s Law: Volume and Temperature
6. 11.6: Gay-Lussac’s Law: Temperature and Pressure
7. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
8. 11.8: Avogadro’s Law: Volume and Moles
9. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
10. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
11. 11.11: Gases in Chemical Reactions

Chapter 12: Liquids, Solids, and Intermolecular Forces

1. 12.1: Interactions between Molecules
2. 12.2: Properties of Liquids and Solids
3. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
4. 12.4: Evaporation and Condensation
5. 12.5: Melting, Freezing, and Sublimation
6. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
7. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
8. 12.8: Water: A Remarkable Molecule

Chapter 13: Solutions

1. 13.1: Prelude - Tragedy in Cameroon
2. 13.2: Solutions: Homogeneous Mixtures
3. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
4. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
5. 13.5: Solution Concentration: Mass Percent
6. 13.6: Solution Concentration: Molarity
7. 13.7: Solution Dilution
8. 13.8: Solution Stoichiometry
9. 13.9: Freezing Point Depression and Boiling Point Elevation: Making Water Freeze Colder and Boil Hotter
10. 13.10: Osmosis: Why Drinking Salt Water Causes Dehydration

Chapter 14: Acids and Bases

1. 14.1: Sour Patch Kids and International Spy Movies
3. 14.2: Acids: Properties and Examples
4. 14.3: Bases: Properties and Examples
5. 14.4: Molecular Definitions of Acids and Bases
6. 14.5: Reactions of Acids and Bases
7. 14.6: Acid–Base Titration: A Way to Quantify the Amount of Acid or Base in a Solution
8. 14.7: Strong and Weak Acids and Bases
9. 14.8: Water: Acid and Base in One
10. 14.9: The pH and pOH Scales: Ways to Express Acidity and Basicity

Skills to Develop
• Define \(\text{pH} \) and \(\text{pOH} \)
• Determine the pH of acidic and basic solutions.
• Determine the hydronium ion concentration and pOH from pH.

As we have seen, \([H_3O^+]\) and \([OH^-]\) values can be markedly different from one aqueous solution to another. So chemists defined a new scale that succinctly indicates the concentrations of either of these two ions.

\(\text{pH} \) is a logarithmic function of \([H_3O^+]):

\[
\text{pH} = -\log[H_3O^+] \label{pH}
\]

\(\text{pH} \) is usually (but not always) between 0 and 14. Knowing the dependence of \(\text{pH} \) on \([H_3O^+]), we can summarize as follows:
• If pH < 7, then the solution is acidic.
• If pH = 7, then the solution is neutral.
• If pH > 7, then the solution is basic.

This is known as the \(\text{pH} \) scale. The range of values from 0 to 14 that describes the acidity or basicity of a solution. You can use \(\text{pH} \) to make a quick determination whether a given aqueous solution is acidic, basic, or neutral. Figure \(\PageIndex{1} \) illustrates this relationship, along with some examples of various solutions. Because hydrogen ion concentrations are generally less than one (for example \(1.3 \times 10^{-3} \text{ M}\)), the log of the number will be a negative number. To make pH even easier to work with, pH is defined as the **negative log of \([H_3O^+])**, which will give a positive value for pH.
Warning: The pH scale has no limits.

pH is usually (but not always) between 0 and 14. Knowing the dependence of pH on $[\text{H}_3\text{O}^+]$, we can summarize as follows:

- If pH < 7, then the solution is acidic.
- If pH = 7, then the solution is neutral.
- If pH > 7, then the solution is basic.

This is known as the pH scale. The range of values from 0 to 14 that describes the acidity or basicity of a solution. You can use pH to make a quick determination whether a given aqueous solution is acidic, basic, or neutral.

Example \((\text{PageIndex}(1))\)

Label each solution as acidic, basic, or neutral based only on the stated pH.

a. milk of magnesia, pH = 10.5
b. pure water, pH = 7
c. wine, pH = 3.0

Answer
a. With a pH greater than 7, milk of magnesia is basic. (Milk of magnesia is largely Mg(OH)\(_2\).)
b. Pure water, with a pH of 7, is neutral.
c. With a pH of less than 7, wine is acidic.

Exercise \(\PageIndex{1}\)

Identify each substance as acidic, basic, or neutral based only on the stated \(\text{pH}\).

a. human blood with \(\text{pH} = 7.4\)
b. household ammonia with \(\text{pH} = 11.0\)
c. cherries with \(\text{pH} = 3.6\)

Answer a basic

Answer b basic

Answer c acidic

Calculating pH from Hydronium Concentration

The pH of solutions can be determined by using logarithms as illustrated in the next example for stomach acid. Stomach acid is a solution of \((\text{HCl})\) with a hydronium ion concentration of \(1.2 \times 10^{-3}\; \text{M}\), what is the \(\text{pH}\) of the solution?

\[
\begin{align*}
\text{pH} &= -\log [\text{H}_3\text{O}^+] \\
&= -\log(1.2 \times 10^{-3}) \\
&= -(−2.92) = 2.92
\end{align*}
\]

Logarithms

To get the log value on your calculator, enter the number (in this case, the hydronium ion concentration) first, then press the LOG key.

If the number is \(1.0 \times 10^{-5}\) (for \([\text{H}_3\text{O}^+] = 1.0 \times 10^{-5}\; \text{M}\)) you should get an answer of "-5"

If you get a different answer, or an error, try pressing the LOG key before you enter the number.

Example \(\PageIndex{2}\): Converting pH to Hydronium Concentration

Find the pH, given the \([\text{H}_3\text{O}^+]\) of the following:

a. \(1 \times 10^{-3}\; \text{M}\)
b. \(2.5 \times 10^{-11}\; \text{M}\)
c. \(4.7 \times 10^{-9}\; \text{M}\)
Steps for Problem Solving

Identify the "given" information and what the problem is asking you to "find."

Given:

a. \([H_3O^+] = 1 \times 10^{-3} \text{ M}\)

b. \([H_3O^+] = 2.5 \times 10^{-11} \text{ M}\)

c. \([H_3O^+] = 4.7 \times 10^{-9} \text{ M}\)

Find: ? pH

Plan the problem

Need to use the expression for pH
(Equation \ref{pH})

\[
pH = - \log [H_3O^+]
\]

Calculate

Now substitute the known quantity into the equation and solve.

a. \(pH = - \log [1 \times 10^{-3}] = 3.0\) (1 decimal places since 1 has 1 significant figure)

b. \(pH = - \log [2.5 \times 10^{-11}] = 10.60\) (2 decimal places since 2.5 has 2 significant figures)

c. \(pH = - \log [4.7 \times 10^{-9}] = 8.30\) (2 decimal places since 4.7 has 2 significant figures)

The other issue that concerns us here is significant figures. Because the number(s) before the decimal point in a logarithm relate to the power on 10, the number of digits \textit{after} the decimal point is what determines the number of significant figures in the final answer:
Steps for Problem Solving

Exercise \(\PageIndex{2}\)

Find the pH, given \([H_3O^+]\) of the following:

a. \(5.8 \times 10^{-4}\) M
b. \(1.0\times 10^{-7}\)

Answer a
3.22

Answer b
7.00

Calculating Hydronium Concentration from pH

Sometimes you need to work "backwards" - you know the pH of a solution and need to find \([H_3O^+]\), or even the concentration of the acid solution. How do you do that? To convert pH into \([H_3O^+]\) we solve Equation \ref{pH} for \([H_3O^+]\). This involves taking the antilog (or inverse log) of the negative value of pH.

\[
[H_3O^+] = \text{antilog} (-pH)
\]

or

\[
[H_3O^+] = 10^{-pH} \label{ph1}
\]

As mentioned above, different calculators work slightly differently - make sure you can do the following calculations using your calculator.

Calculator Skills

We have a solution with a pH = 8.3. What is \([H_3O^+]\) ?

With some calculators you will do things in the following order:

1. Enter 8.3 as a negative number (use the key with both the +/- signs, not the subtraction key)
2. Use your calculator's 2nd or Shift or INV (inverse) key to type in the symbol found above the LOG key. The shifted function should be \(10^x\).
3. You should get the answer 5.0×10^{-9}

Other calculators require you to enter keys in the order they appear in the equation.

1. Use the Shift or second function to key in the 10^x function.
2. Use the +/- key to type in a negative number, then type in 8.3
3. You should get the answer 5.0×10^{-9}

If neither of these methods work, try rearranging the order in which you type in the keys. Don't give up - you must master your calculator!

Example \(\PageIndex{3}\): Calculating Hydronium Concentration from pH

Find the hydronium ion concentration in a solution with a pH of 12.6. Is this solution an acid or a base? How do you know?

SOLUTION

Steps for Problem Solving

Identify the "given" information and what the problem is asking you to "find."

Given: pH = 12.6

Find: $[\text{H}_3\text{O}^+] = ? \text{ M}$

Need to use the expression for $[\text{H}_3\text{O}^+]$ (Equation \ref{ph1})

$[\text{H}_3\text{O}^+] = \text{antilog} \ (-\text{pH})$ or $[\text{H}_3\text{O}^+] = 10^{-\text{pH}}$

Now substitute the known quantity into the equation and solve.

$[\text{H}_3\text{O}^+] = \text{antilog} \ (12.60) = 2.5 \times 10^{-13} \text{ M}$ (2 significant figures since 4.7 has 12.60 2 decimal places)

or
Steps for Problem Solving

\[[\text{H}_3\text{O}^+] = 10^{-12.60} = 2.5 \times 10^{-13} \text{ M} \]

(2 significant figures since 4.7 has 12.60 2 decimal places)

The other issue that concerns us here is significant figures. Because the number(s) before the decimal point in a logarithm relate to the power on 10, the number of digits after the decimal point is what determines the number of significant figures in the final answer:

Exercise \(\PageIndex{3}\)

If moist soil has a pH of 7.84, what is \([\text{H}_3\text{O}^+]\) of the soil solution?

Answer

1.5 \times 10^{-8} \text{ M}

The \(\text{pOH}\) scale

As with the hydrogen-ion concentration, the concentration of the hydroxide ion can be expressed logarithmically by the \(\text{pOH}\). The \(\text{pOH}\) of a solution is the negative logarithm of the hydroxide-ion concentration.

\[\text{pOH} = -\log [\text{OH}^-] \]

The relation between the hydronium and hydroxide ion concentrations expressed as p-functions is easily derived from the \(\text{K}_w\) expression:

\[\text{K}_w = [\text{H}_3\text{O}^+] [\text{OH}^-] \]

\[-\log \text{K}_w = -\log [\text{H}_3\text{O}^+] + -\log [\text{OH}^-] \]

\[\text{pH} + \text{pOH} = \text{pK}_w \]
At 25 °C, the value of \(K_w\) is \(1.0 \times 10^{-14}\), and so:

\[
\text{14.00}=\text{pH} + \text{pOH}
\]

The hydronium ion molarity in pure water (or any neutral solution) is \(1.0 \times 10^{-7}\) M at 25 °C. The pH and pOH of a neutral solution at this temperature are therefore:

\[
\text{pH}=-\log[H_3O^+]=-\log(1.0 \times 10^{-7}) = 7.00
\]

\[
\text{pOH}=-\log[OH^-]=-\log(1.0 \times 10^{-7}) = 7.00
\]

And so, at this temperature, acidic solutions are those with hydronium ion molarities greater than \(1.0 \times 10^{-7}\) M and hydroxide ion molarities less than \(1.0 \times 10^{-7}\) M (corresponding to pH values less than 7.00 and pOH values greater than 7.00). Basic solutions are those with hydronium ion molarities less than \(1.0 \times 10^{-7}\) M and hydroxide ion molarities greater than \(1.0 \times 10^{-7}\) M (corresponding to pH values greater than 7.00 and pOH values less than 7.00).

Example (PageIndex{4}): Find the pH of a solution with a pH of 4.42.

SOLUTION

Steps for Problem Solving

Identify the "given" information and what the problem is asking you to "find."

Given: \(\text{pH} = 4.42\)

Find: \(\text{pOH}\)

Plan the problem

Need to use the expression

\[\text{pOH} = 14 - \text{pH}\]

Calculate

Now substitute the known quantity into the equation and solve.

\[\text{pOH} = 14 - 4.42 = 9.58\]

Think about your result

The pH is that of an acidic solution, and the resulting pOH is the difference after subtracting from 14. The answer has two significant figures because the given pH has two decimal places.

Exercise (PageIndex{4})
The pH of a solution is 8.22. What is the pOH?

Answer

5.78

The diagram below shows all of the interrelationships between $[H^+][H^+]$, $[OH^-][OH^-]$, pH, and pOH.

$$[OH^-] = \frac{1 \times 10^{-14}}{[H^+]}$$

$$[H^+] = \frac{1 \times 10^{-14}}{[OH^-]}$$

$pH = -\log[H^+]$

$pOH = 14 - pH$

$pH = 14 - pOH$

$pOH = 10^{pOH}$

$pOH = -\log pOH$

Figure: Relationships between hydrogen ion concentration, hydroxide ion concentration, pH and pOH.

Contributors

- Peggy Lawson (Oxbow Prairie Heights School). Funded by Saskatchewan Educational Technology Consortium.
- CK-12 Foundation by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
- Template:OpenStax
- Marisa Alviar-Agnew (Sacramento City College)
- Henry Agnew (UC Davis)