Chapter 1
1. Chapter 1: The Chemical World
 2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed

 • Chapter 2
1. Chapter 2: Measurement and Problem Solving
 2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)

 • Chapter 3
1. Chapter 3: Matter and Energy
 2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises
Chapter 4

1. Chapter 4: Atoms and Elements
2. 4.1: Experiencing Atoms at Tiburon
3. 4.2: Indivisible: The Atomic Theory
4. 4.3: The Nuclear Atom
5. 4.4: The Properties of Protons, Neutrons, and Electrons
6. 4.5: Elements: Defined by Their Numbers of Protons
7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
8. 4.7: Ions: Losing and Gaining Electrons
9. 4.8: Isotopes: When the Number of Neutrons Varies
10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

Chapter 5

1. Chapter 5: Molecules and Compounds
2. 5.1: Sugar and Salt
3. 5.2: Compounds Display Constant Composition
4. 5.3: Chemical Formulas: How to Represent Compounds
5. 5.4: A Molecular View of Elements and Compounds
6. 5.5: Writing Formulas for Ionic Compounds
7. 5.6: Nomenclature: Naming Compounds
8. 5.7: Naming Ionic Compounds
9. 5.8: Naming Molecular Compounds
10. 5.9: Naming Acids
11. 5.10: Nomenclature Summary
12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

Chapter 6

1. Chapter 6: Chemical Composition
2. 6.1: How Much Sodium?
3. 6.2: Counting Nails by the Pound
4. 6.3: Counting Atoms by the Gram
5. 6.4: Counting Molecules by the Gram
6. 6.5: Chemical Formulas as Conversion Factors
7. 6.6: Mass Percent Composition of Compounds
8. 6.7: Mass Percent Composition from a Chemical Formula
9. 6.8: Calculating Empirical Formulas for Compounds
10. 6.9: Calculating Molecular Formulas for Compounds

Chapter 7
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix

• Chapter 11
1. Chapter 11: Gases
2. 11.1: Extra-Long Straws
3. 11.2: Kinetic Molecular Theory: A Model for Gases
4. 11.3: Pressure: The Result of Constant Molecular Collisions
5. 11.4: Boyle’s Law: Pressure and Volume
6. 11.5: Charles’s Law: Volume and Temperature
7. 11.6: Gay-Lussac’s Law: Temperature and Pressure
8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
9. 11.8: Avogadro’s Law: Volume and Moles
10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
12. 11.11: Gases in Chemical Reactions

• Chapter 12
1. Chapter 12: Liquids, Solids, and Intermolecular Forces
2. 12.1: Interactions between Molecules
3. 12.2: Properties of Liquids and Solids
4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
5. 12.4: Evaporation and Condensation
6. 12.5: Melting, Freezing, and Sublimation
7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
9. 12.8: Water: A Remarkable Molecule

• Chapter 13
1. Chapter 13: Solutions
2. 13.1: Prelude - Tragedy in Cameroon
3. 13.2: Solutions: Homogeneous Mixtures
4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
6. 13.5: Solution Concentration: Mass Percent
Learning Objectives

- Examine properties of bases.

Perhaps you have eaten too much pizza and felt very uncomfortable hours later. This feeling is due to excess stomach acid being produced. The discomfort can be dealt with by taking an antacid. The base in the antacid will react with the \(\text{HCl} \) in the stomach and neutralize it, taking care of that unpleasant feeling.

Bases

Bases have properties that mostly contrast with those of acids.

1. Aqueous solutions of bases are also electrolytes. Bases can be either strong or weak, just as acids can.
2. Bases often have a bitter taste and are found in foods less frequently than acids. Many bases, like soaps, are slippery to the touch.
3. Bases also change the color of indicators. Litmus turns blue in the presence of a base while phenolphthalein turns pink.
4. Bases do not react with metals in the way that acids do.
5. Bases react with acids to produce a salt and water.
Figure \ref{Phenolphthalein}: Phenolphthalein indicator in presence of base.

Warning

Tasting chemicals and touching them are NOT good lab practices and should be avoided - in other words, don't do this at home.

Bases are less common as foods, but they are nonetheless present in many household products. Many cleaners contain ammonia, a base. Sodium hydroxide is found in drain cleaner. Antacids, which combat excess stomach acid, are comprised of bases such as magnesium hydroxide or sodium hydrogen carbonate. Various common bases and its uses are given in Table \ref{CommonBases}.

<table>
<thead>
<tr>
<th>Some Common Bases</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium hydroxide, NaOH (lye or caustic soda)</td>
<td>Used in the manufacture of soaps and detergents and as the main ingredient in oven and drain cleaners.</td>
</tr>
<tr>
<td>potassium hydroxide, KOH (lye or caustic potash)</td>
<td>Used in the production of liquid soaps and soft soaps. Used in alkaline batteries.</td>
</tr>
<tr>
<td>magnesium hydroxide, Mg(OH)$_2$ (milk of magnesia)</td>
<td>Used as an ingredient in laxatives, antacids, and deodorants. Also used in the neutralization of acidic wastewater.</td>
</tr>
<tr>
<td>calcium hydroxide, Ca(OH)$_2$ (slaked lime)</td>
<td>Used in the manufacture of cement and lime water. Also, added to neutralize acidic soil.</td>
</tr>
<tr>
<td>aluminum hydroxide</td>
<td>Used in water purification and as an ingredient in antacids.</td>
</tr>
<tr>
<td>ammonia, NH$_3$</td>
<td>Used as a building block for the synthesis of many pharmaceutical products and in many commercial cleaning products. Used in the manufacture of fertilizers.</td>
</tr>
</tbody>
</table>

Sodium Hydroxide

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with formula \(\ce{NaOH}\). It is a
white solid ionic compound consisting of sodium cations Na^+ and hydroxide anions OH^-.

Dissolution of solid sodium hydroxide in water is a highly exothermic reaction

$$\text{NaOH} (\text{s}) \rightarrow \text{Na}^+(\text{aq}) + \text{OH}^-(\text{aq})$$

The resulting solution is usually colorless and odorless and feels slippery when it comes in contact with skin.

Potassium Hydroxide

Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash. Along with sodium hydroxide (NaOH), this colorless solid is a prototypical strong base. It has many industrial and niche applications, most of which exploit its corrosive nature and its reactivity toward acids. Its dissolution in water is strongly exothermic.

$$\text{KOH} (\text{s}) \rightarrow \text{K}^+(\text{aq}) + \text{OH}^-(\text{aq})$$

Concentrated aqueous solutions are sometimes called *potassium lyes*.

Magnesium Hydroxide

Magnesium hydroxide is the inorganic compound with the chemical formula Mg(OH)_2. Magnesium hydroxide is a common component of antacids, such as milk of magnesia, as well as laxatives.
It is a white solid with low solubility in water. Combining a solution of many magnesium salts with basic water induces precipitation of solid \(\ce{Mg(OH)2}\). Although a weak concentration of dissociated ions can be found in solution:

\[
\ce{Mg(OH)2 (s) <=> Mg^{2+} (aq) + 2 OH^−(aq)}
\]

Calcium Hydroxide

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula \(\ce{Ca(OH)2}\). It is a colorless crystal or white powder. It has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, or pickling lime. Calcium hydroxide is used in many applications, including food preparation. Limewater is the common name for a saturated solution of calcium hydroxide.

Calcium hydroxide is relatively insoluble in water, but is large enough that its solutions are basic according to the following reaction:

\[
\ce{Ca(OH)2 (s) <=> Ca^{2+}(aq) + 2 OH^−(aq)}
\]

Ammonia

Ammonia is a compound of nitrogen and hydrogen with the formula \(\ce{NH3}\) and is a colorless gas with a characteristic pungent smell. It is the active product of “smelling salts,” and can quickly revive the faint of heart and light of head. Although common in nature and in wide use, ammonia is both caustic and hazardous in its concentrated form.
In aqueous solution, ammonia acts as a base, acquiring hydrogen ions from $\ce{H_2O}$ to yield ammonium and hydroxide ions

$$\ce{NH3 (g) + H2O (l) <=> NH4^{+} (aq) + OH^{-} (aq)}$$

Ammonia is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products.

Summary

- A brief summary of properties of bases are given.
- Properties bases mostly contrast acids.
- Bases have many and varied uses.

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- **CK-12 Foundation** by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
- **Marisa Alviar-Agnew** *(Sacramento City College)*
- Henry Agnew *(UC Davis)*