Chapter 1

1. Chapter 1: The Chemical World
2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed

• Chapter 2

1. Chapter 2: Measurement and Problem Solving
2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)

• Chapter 3

1. Chapter 3: Matter and Energy
2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises
Chapter 4: Atoms and Elements

1. Chapter 4: Atoms and Elements
2. 4.1: Experiencing Atoms at Tiburon
3. 4.2: Indivisible: The Atomic Theory
4. 4.3: The Nuclear Atom
5. 4.4: The Properties of Protons, Neutrons, and Electrons
6. 4.5: Elements: Defined by Their Numbers of Protons
7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
8. 4.7: Ions: Losing and Gaining Electrons
9. 4.8: Isotopes: When the Number of Neutrons Varies
10. 4.9: Atomic Mass: The Average Mass of an Element's Atoms

Chapter 5: Molecules and Compounds

1. Chapter 5: Molecules and Compounds
2. 5.1: Sugar and Salt
3. 5.2: Compounds Display Constant Composition
4. 5.3: Chemical Formulas: How to Represent Compounds
5. 5.4: A Molecular View of Elements and Compounds
6. 5.5: Writing Formulas for Ionic Compounds
7. 5.6: Nomenclature: Naming Compounds
8. 5.7: Naming Ionic Compounds
9. 5.8: Naming Molecular Compounds
10. 5.9: Naming Acids
11. 5.10: Nomenclature Summary
12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

Chapter 6: Chemical Composition

1. Chapter 6: Chemical Composition
2. 6.1: How Much Sodium?
3. 6.2: Counting Nails by the Pound
4. 6.3: Counting Atoms by the Gram
5. 6.4: Counting Molecules by the Gram
6. 6.5: Chemical Formulas as Conversion Factors
7. 6.6: Mass Percent Composition of Compounds
8. 6.7: Mass Percent Composition from a Chemical Formula
9. 6.8: Calculating Empirical Formulas for Compounds
10. 6.9: Calculating Molecular Formulas for Compounds

Chapter 7
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix

• Chapter 11

1. Chapter 11: Gases
2. 11.1: Extra-Long Straws
3. 11.2: Kinetic Molecular Theory: A Model for Gases
4. 11.3: Pressure: The Result of Constant Molecular Collisions
5. 11.4: Boyle’s Law: Pressure and Volume
6. 11.5: Charles’s Law: Volume and Temperature
7. 11.6: Gay-Lussac's Law: Temperature and Pressure
8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
9. 11.8: Avogadro’s Law: Volume and Moles
10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen

• Chapter 12

1. Chapter 12: Liquids, Solids, and Intermolecular Forces
2. 12.1: Interactions between Molecules
3. 12.2: Properties of Liquids and Solids
4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
5. 12.4: Evaporation and Condensation
6. 12.5: Melting, Freezing, and Sublimation
7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
9. 12.8: Water: A Remarkable Molecule

• Chapter 13

1. Chapter 13: Solutions
2. 13.1: Prelude - Tragedy in Cameroon
3. 13.2: Solutions: Homogeneous Mixtures
4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
6. 13.5: Solution Concentration: Mass Percent
Learning Objectives

- To describe the solid and liquid phases.

Solids and liquids are collectively called **condensed phases** because their particles are in virtual contact. The two states share little else, however.

Solids

In the solid state, the individual particles of a substance are in fixed positions with respect to each other because there is not enough thermal energy to overcome the intermolecular interactions between the particles. As a result, solids have a definite shape and volume. Most solids are hard, but some (like waxes) are relatively soft. Many solids composed of ions can also be quite brittle.
Solids usually have their constituent particles arranged in a regular, three-dimensional array of alternating positive and negative ions called a crystal. The effect of this regular arrangement of particles is sometimes visible macroscopically, as shown in Figure \(\PageIndex{1}\). Some solids, especially those composed of large molecules, cannot easily organize their particles in such regular crystals and exist as amorphous (literally, "without form") solids. Glass is one example of an amorphous solid.

Liquids

If the particles of a substance have enough energy to partially overcome intermolecular interactions, then the particles can move about each other while remaining in contact. This describes the liquid state. In a liquid, the particles are still in close contact, so liquids have a definite volume. However, because the particles can move about each other rather freely, a liquid has no definite shape and takes a shape dictated by its container.
Gases

If the particles of a substance have enough energy to completely overcome intermolecular interactions, then the particles can separate from each other and move about randomly in space. Like liquids, gases have no definite shape, but unlike solids and liquids, gases have no definite volume either.

Figure \PageIndex{3}: A Representation of the Solid, Liquid, and Gas States. A solid has definite volume and shape, a liquid has a definite volume but no definite shape, and a gas has neither a definite volume nor shape.

The change from solid to liquid usually does not significantly change the volume of a substance. However, the change from a liquid to a gas significantly increases the volume of a substance, by a factor of 1,000 or more. Figure \PageIndex{3} shows the differences among solids, liquids, and gases at the molecular level, while Table \PageIndex{1} lists the different characteristics of these states.

Table \PageIndex{1}: Characteristics of the Three States of Matter

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape</td>
<td>definite</td>
<td>indefinite</td>
<td>indefinite</td>
</tr>
<tr>
<td>volume</td>
<td>definite</td>
<td>definite</td>
<td>indefinite</td>
</tr>
<tr>
<td>relative intermolecular interaction strength</td>
<td>strong</td>
<td>moderate</td>
<td>weak</td>
</tr>
<tr>
<td>relative particle positions</td>
<td>in contact and fixed in place</td>
<td>in contact but not fixed</td>
<td>not in contact, random positions</td>
</tr>
</tbody>
</table>

Example \PageIndex{1}

What state or states of matter does each statement describe?

a. This state has a definite volume.
b. This state has no definite shape.
c. This state allows the individual particles to move about while remaining in contact.

SOLUTION

a. This statement describes either the liquid state or the solid state.
b. This statement describes either the liquid state or the gas state.
Looking Closer: Water, the Most Important Liquid

Earth is the only known body in our solar system that has liquid water existing freely on its surface. That is a good thing because life on Earth would not be possible without the presence of liquid water.

Water has several properties that make it a unique substance among substances. It is an excellent solvent; it dissolves many other substances and allows those substances to react when in solution. In fact, water is sometimes called the *universal solvent* because of this ability. Water has unusually high melting and boiling points (0°C and 100°C, respectively) for such a small molecule. The boiling points for similar-sized molecules, such as methane (BP = −162°C) and ammonia (BP = −33°C), are more than 100° lower. Though a liquid at normal temperatures, water molecules experience a relatively strong intermolecular interaction that allows them to maintain the liquid phase at higher temperatures than expected.

Unlike most substances, the solid form of water is less dense than its liquid form, which allows ice to float on water. In colder weather, lakes and rivers freeze from the top, allowing animals and plants to continue to live underneath. Water also requires an unusually large amount of energy to change temperature. While 100 J of energy will change the temperature of 1 g of Fe by 230°C, this same amount of energy will change the temperature of 1 g of H₂O by only 100°C. Thus, water changes its temperature slowly as heat is added or removed. This has a major impact on weather, as storm systems like hurricanes can be impacted by the amount of heat that ocean water can store.

Water’s influence on the world around us is affected by these properties. Isn’t it fascinating that such a small molecule can have such a big impact?
Key Takeaway

• Solids and liquids are phases that have their own unique properties.

Contributors

• Marisa Alviar-Agnew (Sacramento City College)

• Henry Agnew (UC Davis)