Chapter 1

1. Chapter 1: The Chemical World
2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed

• Chapter 2

1. Chapter 2: Measurement and Problem Solving
2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)

• Chapter 3

1. Chapter 3: Matter and Energy
2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises
• Chapter 4
 1. Chapter 4: Atoms and Elements
 2. 4.1: Experiencing Atoms at Tiburon
 3. 4.2: Indivisible: The Atomic Theory
 4. 4.3: The Nuclear Atom
 5. 4.4: The Properties of Protons, Neutrons, and Electrons
 6. 4.5: Elements: Defined by Their Numbers of Protons
 7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
 8. 4.7: Ions: Losing and Gaining Electrons
 9. 4.8: Isotopes: When the Number of Neutrons Varies
 10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

• Chapter 5
 1. Chapter 5: Molecules and Compounds
 2. 5.1: Sugar and Salt
 3. 5.2: Compounds Display Constant Composition
 4. 5.3: Chemical Formulas: How to Represent Compounds
 5. 5.4: A Molecular View of Elements and Compounds
 6. 5.5: Writing Formulas for Ionic Compounds
 7. 5.6: Nomenclature: Naming Compounds
 8. 5.7: Naming Ionic Compounds
 9. 5.8: Naming Molecular Compounds
 10. 5.9: Naming Acids
 11. 5.10: Nomenclature Summary
 12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

• Chapter 6
 1. Chapter 6: Chemical Composition
 2. 6.1: How Much Sodium?
 3. 6.2: Counting Nails by the Pound
 4. 6.3: Counting Atoms by the Gram
 5. 6.4: Counting Molecules by the Gram
 6. 6.5: Chemical Formulas as Conversion Factors
 7. 6.6: Mass Percent Composition of Compounds
 8. 6.7: Mass Percent Composition from a Chemical Formula
 9. 6.8: Calculating Empirical Formulas for Compounds
 10. 6.9: Calculating Molecular Formulas for Compounds

• Chapter 7
1. Chapter 7: Chemical Reactions
 2. 7.1: Grade School Volcanoes, Automobiles, and Laundry Detergents
 3. 7.2: Evidence of a Chemical Reaction
 4. 7.3: The Chemical Equation
 5. 7.4: How to Write Balanced Chemical Equations
 6. 7.5: Aqueous Solutions and Solubility: Compounds Dissolved in Water
 7. 7.6: Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid
 8. 7.7: Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations
 9. 7.8: Acid–Base and Gas Evolution Reactions
 10. 7.9: Oxidation–Reduction Reactions
 11. 7.10: Classifying Chemical Reactions
 12. 7.11: The Activity Series

 • Chapter 8
 1. Chapter 8: Quantities in Chemical Reactions
 2. 8.1: Climate Change: Too Much Carbon Dioxide
 3. 8.2: Stoichiometry
 4. 8.3: Making Molecules: Mole-to-Mole Conversions
 5. 8.4: Making Molecules: Mass-to-Mass Conversions
 6. 8.5: Limiting Reactant, Theoretical Yield, and Percent Yield
 7. 8.6: Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants
 8. 8.7: Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

 Chapter 9
 1. Chapter 9: Electrons in Atoms and the Periodic Table
 2. 9.1: Blimps, Balloons, and Models of the Atom
 3. 9.2: Light: Electromagnetic Radiation
 4. 9.3: The Electromagnetic Spectrum
 5. 9.4: The Bohr Model: Atoms with Orbits
 6. 9.5: The Quantum-Mechanical Model: Atoms with Orbitals
 7. 9.6: Quantum-Mechanical Orbitals and Electron Configurations
 8. 9.7: Electron Configurations and the Periodic Table
 9. 9.8: The Explanatory Power of the Quantum-Mechanical Model
 10. 9.9: Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character

 • Chapter 10
 1. Chapter 10: Chemical Bonding
 2. 10.1: Bonding Models and AIDS Drugs
 3. 10.2: Representing Valence Electrons with Dots
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix
 • Chapter 11
 1. Chapter 11: Gases
 2. 11.1: Extra-Long Straws
 3. 11.2: Kinetic Molecular Theory: A Model for Gases
 4. 11.3: Pressure: The Result of Constant Molecular Collisions
 5. 11.4: Boyle’s Law: Pressure and Volume
 6. 11.5: Charles’s Law: Volume and Temperature
 7. 11.6: Gay-Lussac's Law: Temperature and Pressure
 8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
 9. 11.8: Avogadro’s Law: Volume and Moles
 10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
 11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
 12. 11.11: Gases in Chemical Reactions
 • Chapter 12
 1. Chapter 12: Liquids, Solids, and Intermolecular Forces
 2. 12.1: Interactions between Molecules
 3. 12.2: Properties of Liquids and Solids
 4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
 5. 12.4: Evaporation and Condensation
 6. 12.5: Melting, Freezing, and Sublimation
 7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
 8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
 9. 12.8: Water: A Remarkable Molecule
 • Chapter 13
 1. Chapter 13: Solutions
 2. 13.1: Prelude - Tragedy in Cameroon
 3. 13.2: Solutions: Homogeneous Mixtures
 4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
 5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
 6. 13.5: Solution Concentration: Mass Percent
Learning Objectives

- Identify when a reaction will evolve a gas.

Neutralization Reactions

Acids and bases react chemically with each other to form salts. A salt is a general chemical term for any ionic compound formed from an acid and a base. In reactions where the acid is a hydrogen ion containing compound and the base is a hydroxide ion containing compound, water is also a product. The general reaction is as follows:

$$\text{acid + base} \rightarrow \text{water + salt}$$

The reaction of acid and base to make water and a salt is called **neutralization**. Like any chemical equation, a neutralization chemical equation must be properly balanced. For example, the neutralization reaction between sodium hydroxide and hydrochloric acid is as follows:

$$\text{NaOH (aq)} + \text{HCl (aq)} \rightarrow \text{NaCl (aq)} + \text{H}_2\text{O (ℓ)} \ \label{Eq2}$$

with coefficients all understood to be one. The neutralization reaction between sodium hydroxide and sulfuric acid is as follows:
Example \(\PageIndex{1}\): Neutralizing Nitric Acid

Nitric acid (\text{HNO}_3(aq)) can be neutralized by calcium hydroxide (\text{Ca(OH)}_2(aq)). Write a balanced chemical equation for the reaction between these two compounds and identify the salt it produces.

Solution

<table>
<thead>
<tr>
<th>Steps</th>
<th>Explanation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write the unbalanced equation.</td>
<td>This is a double displacement reaction, so the cations and anions swap to create new products.</td>
<td>\text{Ca(OH)}_2(aq) + \text{HNO}_3(aq) → \text{Ca(NO}_3)_2(aq) + \text{H}_2\text{O(ℓ)}</td>
</tr>
<tr>
<td>Balance the equation.</td>
<td>Because there are two OH(^-) ions in the formula for Ca(OH)(_2), we need two moles of HNO(_3) to provide H(^+) ions</td>
<td>\text{Ca(OH)}_2(aq) + 2\text{HNO}_3(aq) → \text{Ca(NO}_3)_2(aq) + 2\text{H}_2\text{O(ℓ)}</td>
</tr>
<tr>
<td>Additional step: Identify the salt</td>
<td></td>
<td>The salt formed is calcium nitrate.</td>
</tr>
</tbody>
</table>

**Exercise \(\PageIndex{1}\))

Hydrocyanic acid (\text{HCN(aq)}) can be neutralized by potassium hydroxide (\text{KOH(aq)}). Write a balanced chemical equation for the reaction between these two compounds and identify the salt it produces.

Answer

\[
\text{KOH (aq) + HCN(aq) → KCN (aq) + H}_2\text{O(ℓ)}
\]

Gas Evolving Reactions

A gas evolution reaction is a chemical process that produces a gas, such as oxygen or carbon dioxide. In the following examples, an acid reacts with a carbonate, producing salt, carbon dioxide, and water, respectively. For example, nitric acid reacts with sodium carbonate to form sodium nitrate, carbon dioxide, and water (Table \(\PageIndex{1}\)):

\[
\text{2HNO}_3(aq) + \text{Na}_2\text{CO}_3(aq) → 2\text{NaNO}_3(aq) + \text{CO}_2(g) + \text{H}_2\text{O(l)}
\]

Sulfuric acid reacts with calcium carbonate to form calcium sulfate, carbon dioxide, and water:

\[
\text{H}_2\text{SO}_4(aq) + \text{CaCO}_3(aq) → \text{CaSO}_4(aq) + \text{CO}_2(g) + \text{H}_2\text{O(l)}
\]

Hydrochloric acid reacts with calcium carbonate to form calcium chloride, carbon dioxide, and water:

\[
\text{2HCl(aq) + CaCO}_3(aq) → \text{CaCl}_2(aq) + \text{CO}_2(g) + \text{H}_2\text{O(l)}
\]

Figure \(\PageIndex{1}\)) demonstrates this type of reaction:
Figure \(\PageIndex{1}\): Reaction of acids with carbonates. In this reaction setup, lime water is poured into one of the test tubes and sealed with a stopper. A small amount of hydrochloric acid is carefully poured into the remaining test tube. A small amount of sodium carbonate is added to the acid, and the tube is sealed with a rubber stopper. The two tubes are connected. As a result of the acid-carbonate reaction, carbon dioxide is produced and the lime water turns milky.

In this reaction setup, lime water is poured into one of the test tubes and sealed with a stopper. A small amount of hydrochloric acid is carefully poured into the remaining test tube. A small amount of sodium carbonate is added to the acid, and the tube is sealed with a rubber stopper. The two tubes are connected. As a result of the acid-carbonate reaction, carbon dioxide is produced and the lime water turns milky.

Table \(\PageIndex{1}\): Types of Compounds That Undergo Gas-Evolution Reactions

<table>
<thead>
<tr>
<th>Reactant Type</th>
<th>Intermediate Product</th>
<th>Gas Evolved</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfide</td>
<td>none</td>
<td>(\ce{H2S})</td>
<td>(\ce{2HCl(aq) + K2S \rightarrow H2S (g) + 2KCl (aq)})</td>
</tr>
<tr>
<td>carbonates and bicarbonates</td>
<td>(\ce{H2CO3})</td>
<td>(\ce{CO2})</td>
<td>(\ce{2HCl(aq) + K2CO2 \rightarrow H2O (l) + CO2(g) + 2KCl (aq)})</td>
</tr>
<tr>
<td>sulfites and bisulfites</td>
<td>(\ce{H2SO3})</td>
<td>(\ce{SO2})</td>
<td>(\ce{2HCl(aq) + K2SO2 \rightarrow H2O (l) + SO2(g) + 2KCl (aq)})</td>
</tr>
<tr>
<td>ammonia</td>
<td>(\ce{NH4OH})</td>
<td>(\ce{NH3})</td>
<td>(\ce{NH4Cl(aq) + KOH \rightarrow H2O (l) + NH3(g) + 2KCl (aq)})</td>
</tr>
</tbody>
</table>

The test tube on the right contains limewater (a solution of calcium hydroxide, \(\ce{Ca(OH)_2}\)). On the left, a solution of hydrochloric acid has been added to a solution of sodium carbonate to generate \(\ce{CO_2(g)}\). The test tubes are sealed with rubber stoppers and connected with a delivery tube. As the reaction proceeds, the limewater on the right turns from clear to milky; this is due to the \(\ce{CO_2(g)}\) reacting with the aqueous calcium hydroxide to form calcium carbonate, which is only slightly soluble in water. The entire experiment is illustrated in the following video:
Video: Carbon Dioxide (CO_2) & Limewater (Chemical Reaction). Carbon dioxide (formed from bicarbonate) and an acid react with limewater, turning it from clear to milky.

When this experiment is repeated with nitric or sulfuric acid instead of HCl, it yields the same results: the clear limewater turns milky, indicating the production of carbon dioxide. Another method to chemically generate gas is the oxidation of metals in acidic solutions. This reaction will yield a metal salt and hydrogen gas.

$$2\text{HCl (aq) + Zn(s) \rightarrow ZnCl}_2 \text{ (aq) + H}_2 \text{ (g)}$$

Here, hydrochloric acid oxidizes zinc to produce an aqueous metal salt and hydrogen gas bubbles. Recall that oxidation refers to a loss of electrons, and reduction refers to the gain of electrons. In the above redox reaction, neutral zinc is oxidized to Zn^{2+}, and the acid, H^+, is reduced to H_2 (g)). The oxidation of metals by strong acids is another common example of a gas evolution reaction.

Contributors

- Boundless (www.boundless.com)
- Wikipedia (CC-BY-SA-3.0)
- Paul Flowers (University of North Carolina - Pembroke), Klaus Theopold (University of Delaware) and Richard Langley (Stephen F. Austin State University) with contributing authors. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/
• Marisa Alviar-Agnew (Sacramento City College)

• Henry Agnew (UC Davis)