Chapter 1

1. Chapter 1: The Chemical World
2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed

- Chapter 2

1. Chapter 2: Measurement and Problem Solving
2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)

- Chapter 3

1. Chapter 3: Matter and Energy
2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises
Chapter 4

1. Chapter 4: Atoms and Elements
2. 4.1: Experiencing Atoms at Tiburon
3. 4.2: Indivisible: The Atomic Theory
4. 4.3: The Nuclear Atom
5. 4.4: The Properties of Protons, Neutrons, and Electrons
6. 4.5: Elements: Defined by Their Numbers of Protons
7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
8. 4.7: Ions: Losing and Gaining Electrons
9. 4.8: Isotopes: When the Number of Neutrons Varies
10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

Chapter 5

1. Chapter 5: Molecules and Compounds
2. 5.1: Sugar and Salt
3. 5.2: Compounds Display Constant Composition
4. 5.3: Chemical Formulas: How to Represent Compounds
5. 5.4: A Molecular View of Elements and Compounds
6. 5.5: Writing Formulas for Ionic Compounds
7. 5.6: Nomenclature: Naming Compounds
8. 5.7: Naming Ionic Compounds
9. 5.8: Naming Molecular Compounds
10. 5.9: Naming Acids
11. 5.10: Nomenclature Summary
12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

Chapter 6

1. Chapter 6: Chemical Composition
2. 6.1: How Much Sodium?
3. 6.2: Counting Nails by the Pound
4. 6.3: Counting Atoms by the Gram
5. 6.4: Counting Molecules by the Gram
6. 6.5: Chemical Formulas as Conversion Factors
7. 6.6: Mass Percent Composition of Compounds
8. 6.7: Mass Percent Composition from a Chemical Formula
9. 6.8: Calculating Empirical Formulas for Compounds
10. 6.9: Calculating Molecular Formulas for Compounds

Chapter 7
1. Chapter 7: Chemical Reactions
2. 7.1: Grade School Volcanoes, Automobiles, and Laundry Detergents
3. 7.2: Evidence of a Chemical Reaction
4. 7.3: The Chemical Equation
5. 7.4: How to Write Balanced Chemical Equations
6. 7.5: Aqueous Solutions and Solubility: Compounds Dissolved in Water
7. 7.6: Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid
8. 7.7: Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations
9. 7.8: Acid–Base and Gas Evolution Reactions
10. 7.9: Oxidation–Reduction Reactions
11. 7.10: Classifying Chemical Reactions
12. 7.11: The Activity Series

• Chapter 8
1. Chapter 8: Quantities in Chemical Reactions
2. 8.1: Climate Change: Too Much Carbon Dioxide
3. 8.2: Stoichiometry
4. 8.3: Making Molecules: Mole-to-Mole Conversions
5. 8.4: Making Molecules: Mass-to-Mass Conversions
6. 8.5: Limiting Reactant, Theoretical Yield, and Percent Yield
7. 8.6: Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants
8. 8.7: Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

Chapter 9
1. Chapter 9: Electrons in Atoms and the Periodic Table
2. 9.1: Blimps, Balloons, and Models of the Atom
3. 9.2: Light: Electromagnetic Radiation
4. 9.3: The Electromagnetic Spectrum
5. 9.4: The Bohr Model: Atoms with Orbits
6. 9.5: The Quantum-Mechanical Model: Atoms with Orbitals
7. 9.6: Quantum-Mechanical Orbitals and Electron Configurations
8. 9.7: Electron Configurations and the Periodic Table
9. 9.8: The Explanatory Power of the Quantum-Mechanical Model
10. 9.9: Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character

• Chapter 10
1. Chapter 10: Chemical Bonding
2. 10.1: Bonding Models and AIDS Drugs
3. 10.2: Representing Valence Electrons with Dots
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix

Chapter 11
1. Chapter 11: Gases
2. 11.1: Extra-Long Straws
3. 11.2: Kinetic Molecular Theory: A Model for Gases
4. 11.3: Pressure: The Result of Constant Molecular Collisions
5. 11.4: Boyle’s Law: Pressure and Volume
6. 11.5: Charles’s Law: Volume and Temperature
7. 11.6: Gay-Lussac's Law: Temperature and Pressure
8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
9. 11.8: Avogadro’s Law: Volume and Moles
10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
12. 11.11: Gases in Chemical Reactions

Chapter 12
1. Chapter 12: Liquids, Solids, and Intermolecular Forces
2. 12.1: Interactions between Molecules
3. 12.2: Properties of Liquids and Solids
4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
5. 12.4: Evaporation and Condensation
6. 12.5: Melting, Freezing, and Sublimation
7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
9. 12.8: Water: A Remarkable Molecule

Chapter 13
1. Chapter 13: Solutions
2. 13.1: Prelude - Tragedy in Cameroon
3. 13.2: Solutions: Homogeneous Mixtures
4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
6. 13.5: Solution Concentration: Mass Percent
Learning Objectives

- Define and give examples of electrolytes

When some substances are dissolved in water, they undergo either a physical or a chemical change that yields ions in solution. These substances constitute an important class of compounds called electrolytes. Substances that do not yield ions when dissolved are called nonelectrolytes. If the physical or chemical process that generates the ions is essentially 100% efficient (all of the dissolved compound yields ions), then the substance is known as a strong electrolyte. If only a relatively small fraction of the dissolved substance undergoes the ion-producing process, it is called a weak electrolyte.

Substances may be identified as strong, weak, or nonelectrolytes by measuring the electrical conductance of an aqueous solution containing the substance. To conduct electricity, a substance must contain freely mobile, charged species. Most familiar is the conduction of electricity through metallic wires, in which case the mobile, charged entities are electrons. Solutions may also conduct electricity if they contain dissolved ions, with conductivity increasing as ion concentration increases. Applying a voltage to electrodes immersed in a solution permits assessment of the relative concentration of dissolved ions, either quantitatively, by measuring the electrical current flow, or qualitatively, by observing the brightness of a light bulb included in the circuit (Figure\PageIndex{1}).
Solutions of nonelectrolytes such as ethanol do not contain dissolved ions and cannot conduct electricity. Solutions of electrolytes contain ions that permit the passage of electricity. The conductivity of an electrolyte solution is related to the strength of the electrolyte.

**Ionic Electrolytes**

Water and other polar molecules are attracted to ions, as shown in Figure 2. The electrostatic attraction between an ion and a molecule with a dipole is called an ion-dipole attraction. These attractions play an important role in the dissolution of ionic compounds in water.

When ionic compounds dissolve in water, the ions in the solid separate and disperse uniformly throughout the solution because water molecules surround and solvate the ions, reducing the strong electrostatic forces between them. This process represents a physical change known as dissociation. Under most conditions, ionic compounds will dissociate nearly completely when dissolved, and so they are classified as strong electrolytes.

Let us consider what happens at the microscopic level when we add solid KCl to water. Ion-dipole forces attract the positive (hydrogen) end of the polar water molecules to the negative chloride ions at the surface of the solid, and they
attract the negative (oxygen) ends to the positive potassium ions. The water molecules penetrate between individual K\(^+\)
and Cl\(^-\) ions and surround them, reducing the strong interionic forces that bind the ions together and letting them move
off into solution as solvated ions, as Figure \(\PageIndex{2}\) shows. The reduction of the electrostatic attraction permits
the independent motion of each hydrated ion in a dilute solution, resulting in an increase in the disorder of the system as
the ions change from their fixed and ordered positions in the crystal to mobile and much more disordered states in
solution. This increased disorder is responsible for the dissolution of many ionic compounds, including KCl, which
dissolve with absorption of heat.

In other cases, the electrostatic attractions between the ions in a crystal are so large, or the ion-dipole attractive forces
between the ions and water molecules are so weak, that the increase in disorder cannot compensate for the energy
required to separate the ions, and the crystal is insoluble. Such is the case for compounds such as calcium carbonate
(limestone), calcium phosphate (the inorganic component of bone), and iron oxide (rust).

### Solubility Rules

Some combinations of aqueous reactants result in the formation of a solid precipitate as a product. However, some
combinations will not produce such a product. If solutions of sodium nitrate and ammonium chloride are mixed, no
reaction occurs. One could write a molecular equation showing a double-replacement reaction, but both products,
sodium chloride and ammonium nitrate, are soluble and would remain in the solution as ions. Every ion is a spectator
ion and there is no net ionic equation at all. It is useful to be able to predict when a precipitate will occur in a reaction. To
do so, you can use a set of guidelines called the solubility rules (Tables \(\PageIndex{1}\) and \(\PageIndex{2}\)).

**Table \(\PageIndex{1}\): Solubility rules for soluble substances**

<table>
<thead>
<tr>
<th>Soluble in Water</th>
<th>Important Exceptions (insoluble)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Group IA and NH(_4^+) salts</td>
<td>none</td>
</tr>
<tr>
<td>All nitrates, chlorates, perchlorates and acetates</td>
<td>none</td>
</tr>
<tr>
<td>All sulfates</td>
<td>CaSO(_4), BaSO(_4), SrSO(_4), PbSO(_4)</td>
</tr>
<tr>
<td>All chlorides, bromides, and iodides</td>
<td>AgX, Hg(_2)X(_2), PbX(_2) (X= Cl, Br, or I)</td>
</tr>
</tbody>
</table>

**Table \(\PageIndex{2}\): Solubility rules for sparingly soluble substances**

<table>
<thead>
<tr>
<th>Sparingly Soluble in Water</th>
<th>Important Exceptions (soluble)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All carbonates and phosphates</td>
<td>Group IA and NH(_4^+) salts</td>
</tr>
<tr>
<td>All hydroxides</td>
<td>Group IA and NH(_4^+) salts; Ba(^{2+}), Sr(^{2+}), Ca(^{2+}) sparingly soluble</td>
</tr>
<tr>
<td>All sulfides</td>
<td>Group IA, IIA and NH(_4^+) salts; MgS, CaS, BaS sparingly soluble</td>
</tr>
<tr>
<td>All oxalates</td>
<td>Group IA and NH(_4^+) salts</td>
</tr>
</tbody>
</table>
Sparingly Soluble in Water

Important Exceptions (soluble)

Special note: The following electrolytes are of only moderate solubility in water: CH$_3$COOAg, Ag$_2$SO$_4$, KClO$_4$. They will precipitate only if rather concentrated solutions are used.

As an example on how to use the solubility rules, predict if a precipitate will form when solutions of cesium bromide and lead (II) nitrate are mixed.

\[
\ce{Cs^+ (aq) + Br^- (aq) + Pb^{2+} (aq) + 2 NO_3^- (aq) \rightarrow ?}
\]

The potential precipitates from a double-replacement reaction are cesium nitrate and lead (II) bromide. According to the solubility rules table, cesium nitrate is soluble because all compounds containing the nitrate ion, as well as all compounds containing the alkali metal ions, are soluble. Most compounds containing the bromide ion are soluble, but lead (II) is an exception. Therefore, the cesium and nitrate ions are spectator ions and the lead (II) bromide is a precipitate. The balanced net ionic reaction is:

\[
\ce{Pb^{2+} (aq) + 2 Br^- (aq) \rightarrow PbBr_2 (s)}
\]

Example \(\PageIndex{1}\): Solubility

Classify each compound as soluble or insoluble

a. Zn(NO$_3$)$_2$

b. PbBr$_2$

c. Sr$_3$(PO$_4$)$_2$

SOLUTION

a. All nitrates are soluble in water so Zn(NO$_3$)$_2$ is soluble.

b. All bromides are soluble in water, except those combined with Pb$^{2+}$ so PbBr$_2$ is insoluble.

c. All phosphates are insoluble, so Sr$_3$(PO$_4$)$_2$ is insoluble

Exercise \(\PageIndex{1}\): Solubility

Classify each compound as soluble or insoluble.

a. Mg(OH)$_2$

b. KBr

c. Pb(NO$_3$)$_2$

Answer a

insoluble

Answer b

soluble
Summary

Substances that dissolve in water to yield ions are called electrolytes. Nonelectrolytes are substances that do not produce ions when dissolved in water. Solubility rules allow prediction of what products will be insoluble in water.

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

• Paul Flowers (University of North Carolina - Pembroke), Klaus Theopold (University of Delaware) and Richard Langley (Stephen F. Austin State University) with contributing authors. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at [http://cnx.org/contents/85abf193-2bd...a7ac8df6@9.110](http://cnx.org/contents/85abf193-2bd...a7ac8df6@9.110).

• CK-12 Foundation by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.

• Marisa Alviar-Agnew (Sacramento City College)

• Henry Agnew (UC Davis)