Chapter 1
1. Chapter 1: The Chemical World
2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed

Chapter 2
1. Chapter 2: Measurement and Problem Solving
2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)

Chapter 3
1. Chapter 3: Matter and Energy
2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises

Chapter 4
1. Chapter 4: Atoms and Elements
5. 7.4: How to Write Balanced Chemical Equations
6. 7.5: Aqueous Solutions and Solubility: Compounds Dissolved in Water
7. 7.6: Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid
8. 7.7: Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations
9. 7.8: Acid–Base and Gas Evolution Reactions
10. 7.9: Oxidation–Reduction Reactions
11. 7.10: Classifying Chemical Reactions
12. 7.11: The Activity Series

Chapter 8
1. Chapter 8: Quantities in Chemical Reactions
2. 8.1: Climate Change: Too Much Carbon Dioxide
3. 8.2: Stoichiometry
4. 8.3: Making Molecules: Mole-to-Mole Conversions
5. 8.4: Making Molecules: Mass-to-Mass Conversions
6. 8.5: Limiting Reactant, Theoretical Yield, and Percent Yield
7. 8.6: Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants
8. 8.7: Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

Chapter 9
1. Chapter 9: Electrons in Atoms and the Periodic Table
2. 9.1: Blimps, Balloons, and Models of the Atom
3. 9.2: Light: Electromagnetic Radiation
4. 9.3: The Electromagnetic Spectrum
5. 9.4: The Bohr Model: Atoms with Orbits
6. 9.5: The Quantum-Mechanical Model: Atoms with Orbitals
7. 9.6: Quantum-Mechanical Orbitals and Electron Configurations
8. 9.7: Electron Configurations and the Periodic Table
9. 9.8: The Explanatory Power of the Quantum-Mechanical Model
10. 9.9: Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character

Chapter 10
1. Chapter 10: Chemical Bonding
2. 10.1: Bonding Models and AIDS Drugs
3. 10.2: Representing Valence Electrons with Dots
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix
Skills to Develop

- Use chemical formulas as conversion factors.

Figure \(\PageIndex{1}\) shows that we need two hydrogen atoms and one oxygen atom to make 1 water molecule. If we want to make two water molecules, we will need four hydrogen atoms and two oxygen atoms. If we want to make five molecules of water, we need 10 hydrogen atoms and 5 oxygen atoms. The ratio of atoms we will need to make any number of water molecules is the same: 2 hydrogen atoms to 1 oxygen atom.

![Water Molecules](image)

Figure \(\PageIndex{1}\) Water Molecules. The ratio of hydrogen atoms to oxygen atoms used to make water molecules is always 2:1, no matter how many water molecules are being made.

Using formulas to indicate how many atoms of each element we have in a substance, we can relate the number of moles of molecules to the number of moles of atoms. For example, in 1 mol of water \((H_2O)\) we can construct the relationships given in (Table \(\PageIndex{1}\)).

<table>
<thead>
<tr>
<th>1 Molecule of ((H_2O)) Has</th>
<th>1 Mol of ((H_2O)) Has</th>
<th>Molecular Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \text{ H atoms})</td>
<td>(2 \text{ mol of H atoms})</td>
<td>(\text{or}) (\dfrac{2 \text{ mol of H atoms}}{1 \text{ mol of } H_2O \text{ molecules}}) (\text{or}) (\dfrac{1 \text{ mol of } H_2O \text{ molecules}}{2 \text{ mol of H atoms}})</td>
</tr>
<tr>
<td>(1 \text{ O atom})</td>
<td>(1 \text{ mol of O atoms})</td>
<td>(\text{or}) (\dfrac{1 \text{ mol of O atoms}}{1 \text{ mol of } H_2O \text{ molecules}}) (\text{or}) (\dfrac{1 \text{ mol of } H_2O \text{ molecules}}{1 \text{ mol of O atoms}})</td>
</tr>
</tbody>
</table>

The MOle is big
A mole represents a very large number! The number 602,214,129,000,000,000,000,000 looks about twice as long as a trillion, which means it’s about a trillion trillion.

![A mole](image)

Image used with permission (CC BY-SA NC; https://what-if.xkcd.com/4/).

A trillion trillion kilograms is how much a planet weighs. If 1 mol of quarters were stacked in a column, it could stretch back and forth between Earth and the sun 6.8 billion times.

Table (PageIndex(2)): Molecular and Mass Relationships for Ethanol

<table>
<thead>
<tr>
<th>1 Molecule of (C_2H_6O)</th>
<th>1 Mol of (C_2H_6O)</th>
<th>Molecular and Mass Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 C atoms</td>
<td>2 mol of C atoms</td>
<td>(\frac{2 \text{ mol} \text{ C atoms}}{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}) or (\frac{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}{2 \text{ mol} \text{ C atoms}})</td>
</tr>
<tr>
<td>6 H atoms</td>
<td>6 mol of H atoms</td>
<td>(\frac{6 \text{ mol} \text{ H atoms}}{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}) or (\frac{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}{6 \text{ mol} \text{ H atoms}})</td>
</tr>
<tr>
<td>1 O atom</td>
<td>1 mol of O atoms</td>
<td>(\frac{1 \text{ mol} \text{ O atoms}}{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}) or (\frac{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}{1 \text{ mol} \text{ O atoms}})</td>
</tr>
<tr>
<td>2 (12.01 amu) C</td>
<td>2 (12.01 g) C</td>
<td>(\frac{24.02 \text{ g } C}{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}) or (\frac{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}{24.02 \text{ g } C})</td>
</tr>
<tr>
<td>24.02 amu C</td>
<td>24.02 g C</td>
<td></td>
</tr>
<tr>
<td>6 (1.008 amu) H</td>
<td>6 (1.008 g) H</td>
<td>(\frac{6.048 \text{ g } H}{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}) or (\frac{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}{6.048 \text{ g } H})</td>
</tr>
<tr>
<td>6.048 amu H</td>
<td>6.048 g H</td>
<td></td>
</tr>
<tr>
<td>1 (16.00 amu) O</td>
<td>1 (16.00 g) O</td>
<td>(\frac{16.00 \text{ g } O}{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}) or (\frac{1 \text{ mol} \text{ } C_2H_6O \text{ molecules}}{16.00 \text{ g } O})</td>
</tr>
<tr>
<td>16.00 amu O</td>
<td>16.00 g O</td>
<td></td>
</tr>
</tbody>
</table>

The following example illustrates how we can use the relationships in Table (PageIndex(2)) as conversion factors.

Example (PageIndex(1)): Ethanol
If a sample consists of 2.5 mol of ethanol (C\(_2\)H\(_6\)O), how many moles of carbon atoms does it have?

Solution

Steps for Problem Solving

Identify the "given" information and what the problem is asking you to "find."

- Given: 2.5 mol C\(_2\)H\(_6\)O
- Find: mol C atoms

List other known quantities

- 1 mol C\(_2\)H\(_6\)O = 2 mol C

Prepare a concept map and use the proper conversion factor.

\[
\frac{2 \text{ mol C}}{1 \text{ mol } C_2H_6O}
\]

Note how the unit mol C\(_2\)H\(_6\)O molecules cancels algebraically.

Cancel units and calculate.

\[
2.5 \text{ mol C}_2H_6O \times \frac{2 \text{ mol C}}{1 \text{ mol C}_2H_6O} = 5.0 \text{ mol C atoms}
\]

Think about your result.

There are twice as many C atoms in one C\(_2\)H\(_6\)O molecule, so the final amount should be double.

Exercise \(\PageIndex{1}\))

If a sample contains 6.75 mol of Na\(_2\)SO\(_4\), how many moles of sodium atoms, sulfur atoms, and oxygen atoms does it have?

Answer:

13.5 mol Na atoms, 6.75 mol S atoms, and 27.0 mol O atoms

The fact that 1 mol equals 6.022 \(\times\) 10\(^{23}\) items can also be used as a conversion factor.

Example \(\PageIndex{2}\)): Oxygen Mass

Determine the mass of Oxygen in 75.0g of C\(_2\)H\(_6\)O.

Solution
Steps for Problem Solving

Determine the mass of Oxygen in 75.0g of C\textsubscript{2}H\textsubscript{6}O

Identify the "given" information and what the problem is asking you to "find."

Given: 75.0g C\textsubscript{2}H\textsubscript{6}O
Find: g O

List other known quantities

1 mol O = 16.0g O
1 mol C\textsubscript{2}H\textsubscript{6}O = 1 mol O
1 mol C\textsubscript{2}H\textsubscript{6}O = 46.07g C\textsubscript{2}H\textsubscript{6}O

Prepare a concept map and use the proper conversion factor.

\[
\begin{array}{ccc}
g \text{ C}_2\text{H}_6\text{O} & \xrightarrow{1 \text{ mol C}_2\text{H}_6\text{O}} & 46.07 \text{ g C}_2\text{H}_6\text{O} \\
\times \frac{1 \text{ mol C}_2\text{H}_6\text{O}}{70.98 \text{ g C}_2\text{H}_6\text{O}} & \xrightarrow{1 \text{ mol O}} & 16.00 \text{ g O} \\
& & \xrightarrow{1 \text{ mol O}} \end{array}
\]

Cancel units and calculate.

\[
(75.0 \text{ g C}_2\text{H}_6\text{O}) \times \frac{1 \text{ mol C}_2\text{H}_6\text{O}}{46.07 \text{ g C}_2\text{H}_6\text{O}} \times \frac{1 \text{ mol O}}{1 \text{ mol C}_2\text{H}_6\text{O}} \times \frac{16.00 \text{ g O}}{1 \text{ mol O}} = 26.0 \text{ g O}
\]

Think about your result.

Exercise \(\PageIndex{2}\))

a. How many molecules are present in 16.02 mol of C\textsubscript{4}H\textsubscript{10}? How many C atoms are in 16.02 mol?

b. How many moles of each type of atom are in 2.58 mol of Na\textsubscript{2}SO\textsubscript{4}?

Answer a:
9.647 \times 10^{24} \text{ C}_4\text{H}_{10} \text{ molecules and 3.859} \times 10^{25} \text{ C atoms}

Answer b:
5.16 \text{ mol Na atoms, 2.58 mol S atoms, and 10.3 mol O atoms}

Summary

In any given formula the ratio of the number of moles of molecules (or formula units) to the number of moles of atoms can be used as a conversion factor.