Chapter 1

1. Chapter 1: The Chemical World
 2. 1.1: The Scope of Chemistry
 3. 1.2: Chemicals Compose Ordinary Things
 4. 1.3: Hypothesis, Theories, and Laws
 5. 1.4: The Scientific Method: How Chemists Think
 6. 1.5: A Beginning Chemist: How to Succeed

• Chapter 2

1. Chapter 2: Measurement and Problem Solving
 2. 2.1: Taking Measurements
 3. 2.2: Scientific Notation: Writing Large and Small Numbers
 4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
 5. 2.4: Significant Figures in Calculations
 6. 2.5: The Basic Units of Measurement
 7. 2.6: Problem Solving and Unit Conversions
 8. 2.7: Solving Multistep Conversion Problems
 9. 2.8: Units Raised to a Power
 10. 2.9: Density
 11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
 12. 2.E: Measurement and Problem Solving (Exercises)

• Chapter 3

1. Chapter 3: Matter and Energy
 2. 3.1: In Your Room
 3. 3.2: What is Matter?
 4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
 5. 3.4: Classifying Matter According to Its Composition
 6. 3.5: Differences in Matter: Physical and Chemical Properties
 7. 3.6: Changes in Matter: Physical and Chemical Changes
 8. 3.7: Conservation of Mass: There is No New Matter
 9. 3.8: Energy
 10. 3.9: Energy and Chemical and Physical Change
 11. 3.10: Temperature: Random Motion of Molecules and Atoms
 12. 3.11: Temperature Changes: Heat Capacity
 13. 3.12: Energy and Heat Capacity Calculations
 14. 3.E: Exercises
• Chapter 4

1. Chapter 4: Atoms and Elements
2. 4.1: Experiencing Atoms at Tiburon
3. 4.2: Indivisible: The Atomic Theory
4. 4.3: The Nuclear Atom
5. 4.4: The Properties of Protons, Neutrons, and Electrons
6. 4.5: Elements: Defined by Their Numbers of Protons
7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
8. 4.7: Ions: Losing and Gaining Electrons
9. 4.8: Isotopes: When the Number of Neutrons Varies
10. 4.9: Atomic Mass: The Average Mass of an Element's Atoms

• Chapter 5

1. Chapter 5: Molecules and Compounds
2. 5.1: Sugar and Salt
3. 5.2: Compounds Display Constant Composition
4. 5.3: Chemical Formulas: How to Represent Compounds
5. 5.4: A Molecular View of Elements and Compounds
6. 5.5: Writing Formulas for Ionic Compounds
7. 5.6: Nomenclature: Naming Compounds
8. 5.7: Naming Ionic Compounds
9. 5.8: Naming Molecular Compounds
10. 5.9: Naming Acids
11. 5.10: Nomenclature Summary
12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

• Chapter 6

1. Chapter 6: Chemical Composition
2. 6.1: How Much Sodium?
3. 6.2: Counting Nails by the Pound
4. 6.3: Counting Atoms by the Gram
5. 6.4: Counting Molecules by the Gram
6. 6.5: Chemical Formulas as Conversion Factors
7. 6.6: Mass Percent Composition of Compounds
8. 6.7: Mass Percent Composition from a Chemical Formula
9. 6.8: Calculating Empirical Formulas for Compounds
10. 6.9: Calculating Molecular Formulas for Compounds

• Chapter 7
4. **10.3: Lewis Structures of Ionic Compounds: Electrons Transferred**
5. **10.4: Covalent Lewis Structures: Electrons Shared**
6. **10.5: Writing Lewis Structures for Covalent Compounds**
7. **10.6: Resonance: Equivalent Lewis Structures for the Same Molecule**
8. **10.7: Predicting the Shapes of Molecules**
9. **10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix**

 • **Chapter 11**
 1. **Chapter 11: Gases**
 2. **11.1: Extra-Long Straws**
 3. **11.2: Kinetic Molecular Theory: A Model for Gases**
 4. **11.3: Pressure: The Result of Constant Molecular Collisions**
 5. **11.4: Boyle’s Law: Pressure and Volume**
 6. **11.5: Charles’s Law: Volume and Temperature**
 7. **11.6: Gay-Lussac’s Law: Temperature and Pressure**
 8. **11.7: The Combined Gas Law: Pressure, Volume, and Temperature**
 9. **11.8: Avogadro’s Law: Volume and Moles**
10. **11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles**
11. **11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen**
12. **11.11: Gases in Chemical Reactions**

 • **Chapter 12**
 1. **Chapter 12: Liquids, Solids, and Intermolecular Forces**
 2. **12.1: Interactions between Molecules**
 3. **12.2: Properties of Liquids and Solids**
 4. **12.3: Intermolecular Forces in Action: Surface Tension and Viscosity**
 5. **12.4: Evaporation and Condensation**
 6. **12.5: Melting, Freezing, and Sublimation**
7. **12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole**
8. **12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic**
9. **12.8: Water: A Remarkable Molecule**

 • **Chapter 13**
 1. **Chapter 13: Solutions**
 2. **13.1: Prelude - Tragedy in Cameroon**
 3. **13.2: Solutions: Homogeneous Mixtures**
5. **13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz**
6. **13.5: Solution Concentration: Mass Percent**
In the 19th century, many previously unknown elements were discovered, and scientists noted that certain sets of elements had similar chemical properties. For example, chlorine, bromine, and iodine react with other elements (such as sodium) to make similar compounds. Likewise, lithium, sodium, and potassium react with other elements (such as oxygen) to make similar compounds. Why is this so?

In 1864, Julius Lothar Meyer, a German chemist, organized the elements by atomic mass and grouped them according to their chemical properties. Later that decade, Dmitri Mendeleev, a Russian chemist, organized all the known elements according to similar properties. He left gaps in his table for what he thought were undiscovered elements, and he made some bold predictions regarding the properties of those undiscovered elements. When elements were later discovered whose properties closely matched Mendeleev’s predictions, his version of the table gained favor in the scientific community. Because certain properties of the elements repeat on a regular basis throughout the table (that is, they are periodic), it became known as the periodic table.

Mendeleev had to list some elements out of the order of their atomic masses to group them with other elements that had similar properties.
The **periodic table** is one of the cornerstones of chemistry because it organizes all the known elements on the basis of their chemical properties. A modern version is shown in Figure \(\PageIndex{1}\). Most periodic tables provide additional data (such as atomic mass) in a box that contains each element’s symbol. The elements are listed in order of atomic number.

![Modern Periodic Table](Public Domain; PubChem via NIH)

Figure \(\PageIndex{1}\): A Modern Periodic Table. A modern periodic table lists elements left to right by atomic number.

Features of the Periodic Table

Elements that have similar chemical properties are grouped in columns called groups (or families). As well as being numbered, some of these groups have names—for example, **alkali metals** (the first column of elements), **alkaline earth metals** (the second column of elements), **halogens** (the next-to-last column of elements), and **noble gases** (the last column of elements).

The word *halogen* comes from the Greek for “salt maker” because these elements combine with other elements to form a group of compounds called salts.

To Your Health: Radon

Radon is an invisible, odorless noble gas that is slowly released from the ground, particularly from rocks and soils whose uranium content is high. Because it is a noble gas, radon is not chemically reactive. Unfortunately, it is radioactive, and increased exposure to it has been correlated with an increased lung cancer risk.

Because radon comes from the ground, we cannot avoid it entirely. Moreover, because it is denser than air, radon tends to accumulate in basements, which if improperly ventilated can be hazardous to a building’s inhabitants. Fortunately, specialized ventilation minimizes the amount of radon that might collect. Special fan-and-vent systems are available that draw air from below the basement floor, before it can enter the living space, and vent it above the roof of a house.

After smoking, radon is thought to be the second-biggest *preventable* cause of lung cancer in the United States. The American Cancer Society estimates that 10% of all lung cancers are related to radon exposure. There is uncertainty regarding what levels of exposure cause cancer, as well as what the exact causal agent might be (either radon or one of its breakdown products, many of which are also radioactive and, unlike radon, not gases). The US Environmental Protection Agency recommends testing every floor below the third floor for radon levels to guard against long-term
health effects.

Each row of elements on the periodic table is called a period. Periods have different lengths; the first period has only 2 elements (hydrogen and helium), while the second and third periods have 8 elements each. The fourth and fifth periods have 18 elements each, and later periods are so long that a segment from each is removed and placed beneath the main body of the table.

Certain elemental properties become apparent in a survey of the periodic table as a whole. Every element can be classified as either a metal, a nonmetal, or a metalloid (or semi metal), as shown in Figure \(\PageIndex{2}\). A metal is a substance that is shiny, typically (but not always) silvery in color, and an excellent conductor of electricity and heat. Metals are also malleable (they can be beaten into thin sheets) and ductile (they can be drawn into thin wires). A nonmetal is typically dull and a poor conductor of electricity and heat. Solid nonmetals are also very brittle. As shown in Figure \(\PageIndex{2}\), metals occupy the left three-fourths of the periodic table, while nonmetals (except for hydrogen) are clustered in the upper right-hand corner of the periodic table. The elements with properties intermediate between those of metals and nonmetals are called metalloids (or semi-metals). Elements adjacent to the bold line in the right-hand portion of the periodic table have semimetal properties.

![Figure \(\PageIndex{2}\): Types of Elements. Elements are either metals, nonmetals, or metalloids (or semi metals). Each group is located in a different part of the periodic table. (CC BY-NC-SA; Anonymous by request)](image)

Example \(\PageIndex{1}\)

Based on its position in the periodic table, classify each element below as metal, a nonmetal, or a metalloid.

a. Se
b. Mg
c. Ge

SOLUTION

a. In Figure \(\PageIndex{1}\), selenium lies above and to the right of the diagonal line marking the boundary between metals and nonmetals, so it should be a nonmetal.

b. Magnesium lies to the left of the diagonal line marking the boundary between metals and nonmetals, so it should be a metal.

c. Germanium lies within the diagonal line marking the boundary between metals and nonmetals, so it should be a metalloid.

Exercise \(\PageIndex{1}\)
Based on its location in the periodic table, do you expect indium to be a nonmetal, a metal, or a metalloid?

Answer

Indium is a metal.

Another way to categorize the elements of the periodic table is shown in Figure \((\text{PageIndex}(3))\). The first two columns on the left and the last six columns on the right are called the main group elements. The ten-column block between these columns contains the transition metals. The two rows beneath the main body of the periodic table contain the inner transition metals. The elements in these two rows are also referred to as, respectively, the lanthanide metals and the actinide metals.

![Figure \((\text{PageIndex}(3))\): Special Names for Sections of the Periodic Table.](CC BY-NC-SA; Anonymous by request)

Descriptive Names

As previously noted, the periodic table is arranged so that elements with similar chemical behaviors are in the same group. Chemists often make general statements about the properties of the elements in a group using descriptive names with historical origins.

Group 1: The Alkali Metals

The alkali metals are lithium, sodium, potassium, rubidium, cesium, and francium. Hydrogen is unique in that it is generally placed in Group 1, but it is not a metal.

The compounds of the alkali metals are common in nature and daily life. One example is table salt (sodium chloride); lithium compounds are used in greases, in batteries, and as drugs to treat patients who exhibit manic-depressive, or bipolar, behavior. Although lithium, rubidium, and cesium are relatively rare in nature, and francium is so unstable and highly radioactive that it exists in only trace amounts, sodium and potassium are the seventh and eighth most abundant elements in Earth’s crust, respectively.
Video: Alkali metals in water - Chemical elements: properties and reactions. (The Open University via https://youtu.be/6ZY6d6jrq-0)

Group 2: The Alkaline Earth Metals

The [alkaline earth metals](#) are beryllium, magnesium, calcium, strontium, barium, and radium. Beryllium, strontium, and barium are rare, and radium is unstable and highly radioactive. In contrast, calcium and magnesium are the fifth and sixth most abundant elements on Earth, respectively; they are found in huge deposits of limestone and other minerals.

Group 17: The Halogens

The halogens are fluorine, chlorine, bromine, iodine, and astatine. The name halogen is derived from the Greek words for “salt forming,” which reflects that all the halogens react readily with metals to form compounds, such as sodium chloride and calcium chloride (used in some areas as road salt).

Compounds that contain the fluoride ion are added to toothpaste and the water supply to prevent dental cavities. Fluorine is also found in Teflon coatings on kitchen utensils. Although chlorofluorocarbon propellants and refrigerants are believed to lead to the depletion of Earth’s ozone layer and contain both fluorine and chlorine, the latter is responsible for the adverse effect on the ozone layer. Bromine and iodine are less abundant than chlorine, and astatine is so radioactive that it exists in only negligible amounts in nature.

Group 18: The Noble Gases

The noble gases are helium, neon, argon, krypton, xenon, and radon. Because the noble gases are composed of only
single atoms, they are called monatomic. At room temperature and pressure, they are unreactive gases. Because of their lack of reactivity, for many years they were called inert gases or rare gases. However, the first chemical compounds containing the noble gases were prepared in 1962. Although the noble gases are relatively minor constituents of the atmosphere, natural gas contains substantial amounts of helium. Because of its low reactivity, argon is often used as an unreactive (inert) atmosphere for welding and in light bulbs. The red light emitted by neon in a gas discharge tube is used in neon lights.

Example \(\PageIndex{2}\): Groups

Provide the family or group name of each element.

a. Li
b. Ar
c. Cl

SOLUTION

a. Lithium is an alkali metal (Group 1)
b. Argon is a noble gas (Group 18)
c. Chlorine is a halogen (Group 17)

Exercise \(\PageIndex{2}\): Groups

Provide the family or group name of each element.

a. F
b. Ca
c. Kr

Answer a: Fluorine is a halogen (Group 17)

Answer b: Calcium is a alkaline earth metal (Group 2)

Answer c: Krypton is a noble gas (Group 18)

Example \(\PageIndex{3}\): Classification of Elements

Classify each element as metal, non metal, transition metal or inner transition metal.

a. Li
b. Ar
c. Am
d. Fe

SOLUTION
a. Lithium is a metal.
b. Argon is a non metal
c. Americium is an inner transition metal
d. Iron is a transition metal.

Exercise \(\PageIndex{3}\): Classification of Elements

Classify each element as metal, non metal, transition metal or inner transition metal.

a. F
b. U
c. Cu

Answer a: Fluorine is a nonmetal.

Answer b: Uranium is a metal (and a inner transition metal too)

Answer c: Copper is a metal (and a transition metal too)

Summary

The periodic table is an arrangement of the elements in order of increasing atomic number. Elements that exhibit similar chemistry appear in vertical columns called groups (numbered 1–18 from left to right); the seven horizontal rows are called periods. Some of the groups have widely-used common names, including the alkali metals (Group 1) and the alkaline earth metals (Group 2) on the far left, and the halogens (Group 17) and the noble gases (Group 18) on the far right.

The elements can be broadly divided into metals, nonmetals, and semi metals. Semi metals exhibit properties intermediate between those of metals and nonmetals. Metals are located on the left of the periodic table, and nonmetals are located on the upper right. They are separated by a diagonal band of semi metals. Metals are lustrous, good conductors of electricity, and readily shaped (they are ductile and malleable). Solid nonmetals are generally brittle and poor electrical conductors. Other important groupings of elements in the periodic table are the main group elements, the transition metals, and the inner transition metals (the lanthanides, and the actinides).

References

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- Marisa Alviar-Agnew (Sacramento City College)
- Henry Agnew (UC Davis)