Chapter 1

1. Chapter 1: The Chemical World
 2. 1.1: The Scope of Chemistry
 3. 1.2: Chemicals Compose Ordinary Things
 4. 1.3: Hypothesis, Theories, and Laws
 5. 1.4: The Scientific Method: How Chemists Think
 6. 1.5: A Beginning Chemist: How to Succeed

• Chapter 2

1. Chapter 2: Measurement and Problem Solving
 2. 2.1: Taking Measurements
 3. 2.2: Scientific Notation: Writing Large and Small Numbers
 4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
 5. 2.4: Significant Figures in Calculations
 6. 2.5: The Basic Units of Measurement
 7. 2.6: Problem Solving and Unit Conversions
 8. 2.7: Solving Multistep Conversion Problems
 9. 2.8: Units Raised to a Power
 10. 2.9: Density
 11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
 12. 2.E: Measurement and Problem Solving (Exercises)

• Chapter 3

1. Chapter 3: Matter and Energy
 2. 3.1: In Your Room
 3. 3.2: What is Matter?
 4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
 5. 3.4: Classifying Matter According to Its Composition
 6. 3.5: Differences in Matter: Physical and Chemical Properties
 7. 3.6: Changes in Matter: Physical and Chemical Changes
 8. 3.7: Conservation of Mass: There is No New Matter
 9. 3.8: Energy
 10. 3.9: Energy and Chemical and Physical Change
 11. 3.10: Temperature: Random Motion of Molecules and Atoms
 12. 3.11: Temperature Changes: Heat Capacity
 13. 3.12: Energy and Heat Capacity Calculations
 14. 3.E: Exercises
Chapter 4

1. Chapter 4: Atoms and Elements
2. 4.1: Experiencing Atoms at Tiburon
3. 4.2: Indivisible: The Atomic Theory
4. 4.3: The Nuclear Atom
5. 4.4: The Properties of Protons, Neutrons, and Electrons
6. 4.5: Elements: Defined by Their Numbers of Protons
7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
8. 4.7: Ions: Losing and Gaining Electrons
9. 4.8: Isotopes: When the Number of Neutrons Varies
10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

Chapter 5

1. Chapter 5: Molecules and Compounds
2. 5.1: Sugar and Salt
3. 5.2: Compounds Display Constant Composition
4. 5.3: Chemical Formulas: How to Represent Compounds
5. 5.4: A Molecular View of Elements and Compounds
6. 5.5: Writing Formulas for Ionic Compounds
7. 5.6: Nomenclature: Naming Compounds
8. 5.7: Naming Ionic Compounds
9. 5.8: Naming Molecular Compounds
10. 5.9: Naming Acids
11. 5.10: Nomenclature Summary
12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

Chapter 6

1. Chapter 6: Chemical Composition
2. 6.1: How Much Sodium?
3. 6.2: Counting Nails by the Pound
4. 6.3: Counting Atoms by the Gram
5. 6.4: Counting Molecules by the Gram
6. 6.5: Chemical Formulas as Conversion Factors
7. 6.6: Mass Percent Composition of Compounds
8. 6.7: Mass Percent Composition from a Chemical Formula
9. 6.8: Calculating Empirical Formulas for Compounds
10. 6.9: Calculating Molecular Formulas for Compounds

Chapter 7
1. Chapter 7: Chemical Reactions
 2. 7.1: Grade School Volcanoes, Automobiles, and Laundry Detergents
 3. 7.2: Evidence of a Chemical Reaction
 4. 7.3: The Chemical Equation
 5. 7.4: How to Write Balanced Chemical Equations
 6. 7.5: Aqueous Solutions and Solubility: Compounds Dissolved in Water
 7. 7.6: Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid
 8. 7.7: Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations
 9. 7.8: Acid–Base and Gas Evolution Reactions
 10. 7.9: Oxidation–Reduction Reactions
 11. 7.10: Classifying Chemical Reactions
 12. 7.11: The Activity Series

 • Chapter 8

 1. Chapter 8: Quantities in Chemical Reactions
 2. 8.1: Climate Change: Too Much Carbon Dioxide
 3. 8.2: Stoichiometry
 4. 8.3: Making Molecules: Mole-to-Mole Conversions
 5. 8.4: Making Molecules: Mass-to-Mass Conversions
 6. 8.5: Limiting Reactant, Theoretical Yield, and Percent Yield
 7. 8.6: Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants
 8. 8.7: Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

 Chapter 9

 1. Chapter 9: Electrons in Atoms and the Periodic Table
 2. 9.1: Blimps, Balloons, and Models of the Atom
 3. 9.2: Light: Electromagnetic Radiation
 4. 9.3: The Electromagnetic Spectrum
 5. 9.4: The Bohr Model: Atoms with Orbits
 6. 9.5: The Quantum-Mechanical Model: Atoms with Orbitals
 7. 9.6: Quantum-Mechanical Orbitals and Electron Configurations
 8. 9.7: Electron Configurations and the Periodic Table
 9. 9.8: The Explanatory Power of the Quantum-Mechanical Model
 10. 9.9: Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character

 • Chapter 10

 1. Chapter 10: Chemical Bonding
 2. 10.1: Bonding Models and AIDS Drugs
 3. 10.2: Representing Valence Electrons with Dots
4. **10.3**: Lewis Structures of Ionic Compounds: Electrons Transferred
5. **10.4**: Covalent Lewis Structures: Electrons Shared
6. **10.5**: Writing Lewis Structures for Covalent Compounds
7. **10.6**: Resonance: Equivalent Lewis Structures for the Same Molecule
8. **10.7**: Predicting the Shapes of Molecules
9. **10.8**: Electronegativity and Polarity: Why Oil and Water Don’t Mix
 • **Chapter 11**
 1. **Chapter 11**: Gases
 2. **11.1**: Extra-Long Straws
 3. **11.2**: Kinetic Molecular Theory: A Model for Gases
 4. **11.3**: Pressure: The Result of Constant Molecular Collisions
 5. **11.4**: Boyle’s Law: Pressure and Volume
 6. **11.5**: Charles’s Law: Volume and Temperature
 7. **11.6**: Gay-Lussac’s Law: Temperature and Pressure
 8. **11.7**: The Combined Gas Law: Pressure, Volume, and Temperature
 9. **11.8**: Avogadro’s Law: Volume and Moles
10. **11.9**: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
11. **11.10**: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
12. **11.11**: Gases in Chemical Reactions
 • **Chapter 12**
 1. **Chapter 12**: Liquids, Solids, and Intermolecular Forces
 2. **12.1**: Interactions between Molecules
 3. **12.2**: Properties of Liquids and Solids
 4. **12.3**: Intermolecular Forces in Action: Surface Tension and Viscosity
 5. **12.4**: Evaporation and Condensation
 6. **12.5**: Melting, Freezing, and Sublimation
7. **12.6**: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
8. **12.7**: Types of Crystalline Solids: Molecular, Ionic, and Atomic
9. **12.8**: Water: A Remarkable Molecule
 • **Chapter 13**
 1. **Chapter 13**: Solutions
 2. **13.1**: Prelude - Tragedy in Cameroon
 3. **13.2**: Solutions: Homogeneous Mixtures
4. **13.3**: Solutions of Solids Dissolved in Water: How to Make Rock Candy
5. **13.4**: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
6. **13.5**: Solution Concentration: Mass Percent
Learning Objectives

- Label a change as chemical or physical.
- List evidence that can indicate a chemical change occurred.

Change is happening all around us all of the time. Just as chemists have classified elements and compounds, they have also classified types of changes. Changes are either classified as physical or chemical changes. Chemists learn a lot about the nature of matter by studying the changes that matter can undergo. Chemists make a distinction between two different types of changes that they study - physical changes and chemical changes.

Physical Change

Physical changes are changes in which no bonds are broken or formed. This means that the same types of compounds or elements that were there at the beginning of the change are there at the end of the change. Because the ending materials are the same as the beginning materials, the properties (such as color, boiling point, etc) will also be the same. Physical changes involve moving molecules around, but not changing them. Some types of physical changes include:

- Changes of state (changes from a solid to a liquid or a gas and vice versa)
- Separation of a mixture
- Physical deformation (cutting, denting, stretching)
- Making solutions (special kinds of mixtures)
As an ice cube melts, its shape changes as it acquires the ability to flow. However, its composition does not change. Melting is an example of a physical change. A physical change is a change to a sample of matter in which some properties of the material change, but the identity of the matter does not. When we heat the liquid water, it changes to water vapor. But even though the physical properties have changed, the molecules are exactly the same as before. We still have each water molecule containing two hydrogen atoms and one oxygen atom covalently bonded. When you have a jar containing a mixture of pennies and nickels and you sort the mixture so that you have one pile of pennies and another pile of nickels, you have not altered the identity of either the pennies or the nickels - you've merely separated them into two groups. This would be an example of a physical change. Similarly, if you have a piece of paper, you don't change it into something other than a piece of paper by ripping it up. What was paper before you started tearing is still paper when you're done. Again, this is an example of a physical change.

Figure 1: Ice Melting is a physical change. When liquid water \((H_2O)\) freezes into a solid state (ice), it appears changed; However, this change is only physical as the the composition of the constituent molecules is the same: 11.19% hydrogen and 88.81% oxygen by mass. (Public Domain; Moussa).

Physical changes can further be classified as reversible or irreversible. The melted ice cube may be refrozen, so melting is a reversible physical change. Physical changes that involve a change of state are all reversible. Other changes of state include vaporization (liquid to gas), freezing (liquid to solid), and condensation (gas to liquid). Dissolving is also a reversible physical change. When salt is dissolved into water, the salt is said to have entered the aqueous state. The salt may be regained by boiling off the water, leaving the salt behind.

Chemical Change

Chemical changes occur when bonds are broken and/or formed between molecules or atoms. This means that one substance with a certain set of properties (such as melting point, color, taste, etc) is turned into a different substance with different properties. Chemical changes are frequently harder to reverse than physical changes.

One good example of a chemical change is burning a candle. The act of burning paper actually results in the formation of new chemicals (carbon dioxide and water, to be exact) from the burning of the wax. Another example of a chemical
change is what occurs when natural gas is burned in your furnace. This time, on the left we have a molecule of methane, \(\ce{CH_4} \), and two molecules of oxygen, \(\ce{O_2} \), while on the right we have two molecules of water, \(\ce{H_2O} \), and one molecule of carbon dioxide, \(\ce{CO_2} \). In this case, not only has the appearance changed, but the structure of the molecules has also changed. The new substances do not have the same chemical properties as the original ones. Therefore, this is a chemical change.

![Burning Candle](image)

Figure \(\PageIndex{2} \): Burning of wax to generate water and carbon dioxide is a chemical reaction. (CC-SA-BY-3.0; Andrikkos)

We can't actually see molecules breaking and forming bonds, although that's what defines chemical changes. We have to make other observations to indicate that a chemical change has happened. Some of the evidence for chemical change will involve the energy changes that occur in chemical changes, but some evidence involves the fact that new substances with different properties are formed in a chemical change.

Observations that help to indicate chemical change include:

- Temperature changes (either the temperature increases or decreases)
- Light is given off
- Unexpected color changes (a substance with a different color is made, rather than just mixing the original colors together)
- Bubbles are formed (but the substance is not boiling - you made a substance that is a gas at the temperature of the beginning materials, instead of a liquid)
- Different smell or taste (do not taste your chemistry experiments, though!)
- A solid forms if two clear liquids are mixed (look for *floaties* - technically called a precipitate)

Example \(\PageIndex{1} \)
Label each of the following changes as a physical or chemical change. Give evidence to support your answer.

a. Boiling water
b. A nail rusting
c. A green solution and colorless solution are mixed. The resulting mixture is a solution with a pale green color.
d. Two colorless solutions are mixed. The resulting mixture has a yellow precipitate.

Solution

a. Physical: boiling and melting are physical changes. When water boils no bonds are broken or formed. The change could be written: \(\ce{H_2O (l) \rightarrow H_2O (g)} \)

b. Chemical: The dark grey nail changes color to form an orange flaky substance (the rust); this must be a chemical change. Color changes indicate chemical change. The following reaction occurs: \(\ce{Fe + O_2 \rightarrow Fe_2O_3} \)

c. Physical: because none of the properties changed, this is a physical change. The green mixture is still green and the colorless solution is still colorless. They have just been spread together. No color change occurred or other evidence of chemical change.

d. Chemical: the formation of a precipitate and the color change from colorless to yellow indicate a chemical change.

Exercise \(\PageIndex{1} \)

Label each of the following changes as a physical or chemical change.

a. A mirror is broken.
b. An iron nail corroded in moist air
c. Copper metal is melted.
d. A catalytic converter changes nitrogen dioxide to nitrogen gas and oxygen gas.

Answer a:
physical change

Answer b:
chemical change

Answer c:
physical change

Answer d:
chemical change

Separating Mixtures Through Physical Changes

Homogeneous mixtures (solutions) can be separated into their component substances by physical processes that rely on differences in some physical property, such as differences in their boiling points. Two of these separation methods are distillation and crystallization. Distillation makes use of differences in volatility, a measure of how easily a substance is converted to a gas at a given temperature. A simple distillation apparatus for separating a mixture of substances, at
least one of which is a liquid. The most volatile component boils first and is condensed back to a liquid in the water-cooled condenser, from which it flows into the receiving flask. If a solution of salt and water is distilled, for example, the more volatile component, pure water, collects in the receiving flask, while the salt remains in the distillation flask.

Mixtures of two or more liquids with different boiling points can be separated with a more complex distillation apparatus. One example is the refining of crude petroleum into a range of useful products: aviation fuel, gasoline, kerosene, diesel fuel, and lubricating oil (in the approximate order of decreasing volatility). Another example is the distillation of alcoholic spirits such as brandy or whiskey. This relatively simple procedure caused more than a few headaches for federal authorities in the 1920s during the era of Prohibition, when illegal stills proliferated in remote regions of the United States.

Another example for using physical properties to separate mixtures is filtration (Figure \(\PageIndex{4}\)). Filtration is any of various mechanical, physical or biological operations that separate solids from fluids (liquids or gases) by adding a medium through which only the fluid can pass. The fluid that passes through is called the filtrate. There are many different methods of filtration; all aim to attain the separation of substances. Separation is achieved by some form of interaction between the substance or objects to be removed and the filter. The substance that is to pass through the filter must be a fluid, i.e. a liquid or gas. Methods of filtration vary depending on the location of the targeted material, i.e. whether it is dissolved in the fluid phase or suspended as a solid.
Summary

- Chemists make a distinction between two different types of changes that they study - physical changes and chemical changes.
- Physical changes are changes that do not alter the identity of a substance.
- Chemical changes are changes that occur when one substance is turned into another substance.
- Chemical changes are frequently harder to reverse than physical changes. Observations that indicate a chemical change occurred include color change, temperature change, light given off, formation of bubbles, formation of a precipitate, etc.

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- **CK-12 Foundation** by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
- Boundless (www.boundless.com)
- **Marisa Alviar-Agnew** (Sacramento City College)
• Henry Agnew (UC Davis)