Chapter 1

1. Chapter 1: The Chemical World
 2. 1.1: The Scope of Chemistry
 3. 1.2: Chemicals Compose Ordinary Things
 4. 1.3: Hypothesis, Theories, and Laws
 5. 1.4: The Scientific Method: How Chemists Think
 6. 1.5: A Beginning Chemist: How to Succeed

Chapter 2

1. Chapter 2: Measurement and Problem Solving
 2. 2.1: Taking Measurements
 3. 2.2: Scientific Notation: Writing Large and Small Numbers
 4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
 5. 2.4: Significant Figures in Calculations
 6. 2.5: The Basic Units of Measurement
 7. 2.6: Problem Solving and Unit Conversions
 8. 2.7: Solving Multistep Conversion Problems
 9. 2.8: Units Raised to a Power
 10. 2.9: Density
 11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
 12. 2.E: Measurement and Problem Solving (Exercises)

Chapter 3

1. Chapter 3: Matter and Energy
 2. 3.1: In Your Room
 3. 3.2: What is Matter?
 4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
 5. 3.4: Classifying Matter According to Its Composition
 6. 3.5: Differences in Matter: Physical and Chemical Properties
 7. 3.6: Changes in Matter: Physical and Chemical Changes
 8. 3.7: Conservation of Mass: There is No New Matter
 9. 3.8: Energy
 10. 3.9: Energy and Chemical and Physical Change
 11. 3.10: Temperature: Random Motion of Molecules and Atoms
 12. 3.11: Temperature Changes: Heat Capacity
 13. 3.12: Energy and Heat Capacity Calculations
 14. 3.E: Exercises
Chapter 4

1. Chapter 4: Atoms and Elements
 2. 4.1: Experiencing Atoms at Tiburon
 3. 4.2: Indivisible: The Atomic Theory
 4. 4.3: The Nuclear Atom
 5. 4.4: The Properties of Protons, Neutrons, and Electrons
 6. 4.5: Elements: Defined by Their Numbers of Protons
 7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
 8. 4.7: Ions: Losing and Gaining Electrons
 9. 4.8: Isotopes: When the Number of Neutrons Varies
10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

Chapter 5

1. Chapter 5: Molecules and Compounds
 2. 5.1: Sugar and Salt
 3. 5.2: Compounds Display Constant Composition
 4. 5.3: Chemical Formulas: How to Represent Compounds
 5. 5.4: A Molecular View of Elements and Compounds
 6. 5.5: Writing Formulas for Ionic Compounds
 7. 5.6: Nomenclature: Naming Compounds
 8. 5.7: Naming Ionic Compounds
 9. 5.8: Naming Molecular Compounds
 10. 5.9: Naming Acids
 11. 5.10: Nomenclature Summary
12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

Chapter 6

1. Chapter 6: Chemical Composition
 2. 6.1: How Much Sodium?
 3. 6.2: Counting Nails by the Pound
 4. 6.3: Counting Atoms by the Gram
 5. 6.4: Counting Molecules by the Gram
 6. 6.5: Chemical Formulas as Conversion Factors
 7. 6.6: Mass Percent Composition of Compounds
 8. 6.7: Mass Percent Composition from a Chemical Formula
 9. 6.8: Calculating Empirical Formulas for Compounds
10. 6.9: Calculating Molecular Formulas for Compounds

Chapter 7
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix

• Chapter 11
 1. Chapter 11: Gases
 2. 11.1: Extra-Long Straws
 3. 11.2: Kinetic Molecular Theory: A Model for Gases
 4. 11.3: Pressure: The Result of Constant Molecular Collisions
 5. 11.4: Boyle’s Law: Pressure and Volume
 6. 11.5: Charles’s Law: Volume and Temperature
 7. 11.6: Gay-Lussac’s Law: Temperature and Pressure
 8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
 9. 11.8: Avogadro’s Law: Volume and Moles
 10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
 11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen

• Chapter 12
 1. Chapter 12: Liquids, Solids, and Intermolecular Forces
 2. 12.1: Interactions between Molecules
 3. 12.2: Properties of Liquids and Solids
 4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
 5. 12.4: Evaporation and Condensation
 6. 12.5: Melting, Freezing, and Sublimation
 7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
 8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
 9. 12.8: Water: A Remarkable Molecule

• Chapter 13
 1. Chapter 13: Solutions
 2. 13.1: Prelude - Tragedy in Cameroon
 3. 13.2: Solutions: Homogeneous Mixtures
 4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
 5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
 6. 13.5: Solution Concentration: Mass Percent
Learning Objectives

• To describe the solid, liquid and gas phases.

Water can take many forms. At low temperatures (below 0°C), it is a solid. When at "normal" temperatures (between 0°C and 100°C), it is a liquid. While at temperatures above 100°C, water is a gas (steam). The state the water is in depends upon the temperature. Each state (solid, liquid, and gas) has its own unique set of physical properties. Matter typically exists in one of three states: solid, liquid, or gas.
Matter is usually classified into three classical states, with plasma sometimes added as a fourth state. From left to right: quartz (solid), water (liquid), nitrogen dioxide (gas).

The state a given substance exhibits is also a physical property. Some substances exist as gases at room temperature (oxygen and carbon dioxide), while others, like water and mercury metal, exist as liquids. Most metals exist as solids at room temperature. All substances can exist in any of these three states. Figure 2 shows the differences among solids, liquids, and gases at the molecular level. A solid has definite volume and shape, a liquid has a definite volume but no definite shape, and a gas has neither a definite volume nor shape.

Plasma: A Fourth State of Matter

Technically speaking a fourth state of matter called plasma exists, but it does not naturally occur on earth, so we will...
Solids

In the solid state, the individual particles of a substance are in fixed positions with respect to each other because there is not enough thermal energy to overcome the intermolecular interactions between the particles. As a result, solids have a definite shape and volume. Most solids are hard, but some (like waxes) are relatively soft. Many solids composed of ions can also be quite brittle.

Solids are defined by the following characteristics:

- Definite shape (rigid)
- Definite volume
- Particles vibrate around fixed axes

If we were to cool liquid mercury to its freezing point of \(-39^\circ\text{C}\), and under the right pressure conditions, we would notice all of the liquid particles would go into the solid state. Mercury can be solidified when its temperature is brought to its freezing point. However, when returned to room temperature conditions, mercury does not exist in solid state for long, and returns back to its more common liquid form.

Solids usually have their constituent particles arranged in a regular, three-dimensional array of alternating positive and negative ions called a crystal. The effect of this regular arrangement of particles is sometimes visible macroscopically, as shown in Figure \(\PageIndex{3}\). Some solids, especially those composed of large molecules, cannot easily organize their particles in such regular crystals and exist as amorphous (literally, “without form”) solids. Glass is one example of an amorphous solid.
Liquids

If the particles of a substance have enough energy to partially overcome intermolecular interactions, then the particles can move about each other while remaining in contact. This describes the liquid state. In a liquid, the particles are still in close contact, so liquids have a definite volume. However, because the particles can move about each other rather freely, a liquid has no definite shape and takes a shape dictated by its container.

Liquids have the following characteristics:

- No definite shape (takes the shape of its container)
- Has definite volume
- Particles are free to move over each other, but are still attracted to each other

A familiar liquid is mercury metal. Mercury is an anomaly. It is the only metal we know of that is liquid at room temperature. Mercury also has an ability to stick to itself (surface tension) - a property all liquids exhibit. Mercury has a relatively high surface tension, which makes it very unique. Here you see mercury in its common liquid form.
If we heat liquid mercury to its boiling point of \(357^\circ\text{C}\), and under the right pressure conditions, we would notice all particles in the liquid state go into the gas state.

Gases

If the particles of a substance have enough energy to completely overcome intermolecular interactions, then the particles can separate from each other and move about randomly in space. This describes the gas state, which we will consider in more detail elsewhere. Like liquids, gases have no definite shape, but unlike solids and liquids, gases have no definite volume either. The change from solid to liquid usually does not significantly change the volume of a substance. However, the change from a liquid to a gas significantly increases the volume of a substance, by a factor of 1,000 or more. Gases have the following characteristics:

- No definite shape (takes the shape of its container)
- No definite volume
- Particles move in random motion with little or no attraction to each other
- Highly compressible
Table \PageIndex{1}: Characteristics of the Three States of Matter

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Solids</th>
<th>Liquids</th>
<th>Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape</td>
<td>definite</td>
<td>indefinite</td>
<td>indefinite</td>
</tr>
<tr>
<td>volume</td>
<td>definite</td>
<td>definite</td>
<td>indefinite</td>
</tr>
<tr>
<td>relative intermolecular interaction</td>
<td>strong</td>
<td>moderate</td>
<td>weak</td>
</tr>
<tr>
<td>strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relative particle positions</td>
<td>in contact and fixed in place</td>
<td>in contact but not fixed</td>
<td>not in contact, random positions</td>
</tr>
</tbody>
</table>

Example \PageIndex{1}

What state or states of matter does each statement describe?

a. This state has a definite volume, but no definite shape.
b. This state has no definite volume.
c. This state allows the individual particles to move about while remaining in contact.

SOLUTION

a. This statement describes the liquid state.
b. This statement describes the gas state.
c. This statement describes the liquid state.

Exercise \PageIndex{1}

What state or states of matter does each statement describe?

a. This state has individual particles in a fixed position with regard to each other.
b. This state has individual particles far apart from each other in space.
c. This state has a definite shape.

Answer a: solid

Answer b: gas

Answer c: solid

Summary

- Three states of matter exist - solid, liquid, and gas.
• Solids have a definite shape and volume.
• Liquids have a definite volume, but take the shape of the container.
• Gases have no definite shape or volume

Contributors

• CK-12 Foundation by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
• Marisa Alviar-Agnew (Sacramento City College)
• Henry Agnew (UC Davis)