A group that contains a large number of symmetry elements may often be constructed from simpler groups. This is probably best illustrated using an example. Consider the point groups \(\langle C_2 \rangle \) and \(\langle C_S \rangle \). \(\langle C_2 \rangle \) contains the elements \(\lbrace E \rbrace \) and \(\lbrace C_2 \rbrace \), and has order 2, while \(\langle C_S \rangle \) contains \(\lbrace E \rbrace \) and \(\sigma \) and also has order \(\langle 2 \rangle \). We can use these two groups to construct the group \(\langle C_{2v} \rangle \) by applying the symmetry operations of \(\langle C_2 \rangle \) and \(\langle C_S \rangle \) in sequence.

\[
\begin{array}{lllll}
C_2 \text{ operation} & E & E & C_2 & C_2 \\
C_S \text{ operation} & E & \sigma(xz) & E & \sigma(xz) \\
\text{Result} & E & \sigma_v(xz) & C_2 & \sigma_v'(yz)
\end{array}
\tag{6.1}
\]

Notice that \(\langle C_{2v} \rangle \) has order \(\langle 4 \rangle \), which is the product of the orders of the two lower-order groups. \(\langle C_{2v} \rangle \) may be described as a direct product group of \(\langle C_2 \rangle \) and \(\langle C_S \rangle \). The origin of this name should become obvious when we review the properties of matrices.

Contributors

- Claire Vallance (University of Oxford)