Skills to Develop

- To get an overview of hydrocarbons molecules and their four primary classifications

Hydrocarbons are organic compounds that contain **only** carbon and hydrogen. The four general classes of hydrocarbons are: alkanes, alkenes, alkynes and arenes. Aromatic compounds derive their names from the fact that many of these compounds in the early days of discovery were grouped because they were oils with fragrant odors.

The classifications for hydrocarbons, defined by IUPAC nomenclature of organic chemistry are as follows:

1. Saturated hydrocarbons (alkanes) are the simplest of the hydrocarbon species. They are composed entirely of single bonds and are saturated with hydrogen. The general formula for saturated hydrocarbons is \(C_nH_{2n+2}\) (assuming non-cyclic structures). Saturated hydrocarbons are the basis of petroleum fuels and are found as either linear or branched species. The simplest alkanes have their C atoms bonded in a straight chain; these are called *normal* alkanes. They are named according to the number of C atoms in the chain. The smallest alkane is methane:

 ![Methane](image)

2. Unsaturated hydrocarbons have one or more double or triple bonds between carbon atoms. Those with double bond are called *alkenes* and those with one double bond have the formula \(C_nH_{2n}\) (assuming non-cyclic structures). Those containing triple bonds are called *alkynes*, with general formula \(C_nH_{2n-2}\). The smallest alkene—ethene—has two C atoms and is also known by its common name ethylene:

 ![Ethene](image)

 The smallest alkyne is ethyne, which is also known as acetylene:

 ![Ethyne](image)

3. Cycloalkanes are hydrocarbons containing one or more carbon rings to which hydrogen atoms are attached. The general formula for a saturated hydrocarbon containing one ring is \(C_nH_{2n}\).

4. Aromatic hydrocarbons, also known as arenes, are hydrocarbons that have at least one aromatic ring. Aromatic compounds contain the benzene unit. Benzene itself is composed of six C atoms in a ring, with alternating single and double C–C bonds:
Because of differences in molecular structure, the empirical formula remains different between hydrocarbons; in linear, or "straight-run" alkanes, alkenes and alkynes, the amount of bonded hydrogen lessens in alkenes and alkynes due to the "self-bonding" or catenation of carbon preventing entire saturation of the hydrocarbon by the formation of double or triple bonds.

The inherent ability of hydrocarbons to bond to themselves is known as catenation, and allows hydrocarbon to form more complex molecules, such as cyclohexane, and in rarer cases, arenes such as benzene. This ability comes from the fact that the bond character between carbon atoms is entirely non-polar, in that the distribution of electrons between the two elements is somewhat even due to the same electronegativity values of the elements (~0.30).

Contributors

- Wikipedia