A general chemistry Libretexts Textmap organized around the textbook

Chemistry: The Central Science
by Brown, LeMay, Busten, Murphy, and Woodward

1. Chapter 1: Introduction: Matter and Measurement
 2. 1.1: The Study of Chemistry
 3. 1.2: Classification of Matter
 4. 1.3: Properties of Matter
 5. 1.4: Units of Measurement
 6. 1.5: Uncertainty in Measurement
 7. 1.6: Dimensional Analysis
8. 1.E: Matter and Measurement (Exercises)
9. 1.S: Matter and Measurement (Summary)

• 2
1. Chapter 2: Atoms, Molecules, and Ions
 2. 2.1: The Atomic Theory of Matter
 3. 2.2: The Discovery of Atomic Structure
 4. 2.3: The Modern View of Atomic Structure
 5. 2.4: Atomic Mass
 6. 2.5: The Periodic Table
 7. 2.6: Molecules and Molecular Compounds
 8. 2.7: Ions and Ionic Compounds
 9. 2.8: Naming Inorganic Compounds
 10. 2.9: Some Simple Organic Compounds
11. 2.E: Atoms, Molecules, and Ions (Exercises)
12. 2.S: Atoms, Molecules, and Ions (Summary)

• 3
1. Chapter 3: Stoichiometry: Chemical Formulas and Equations
 2. 3.1: Chemical Equations
 3. 3.2: Some Simple Patterns of Chemical Reactivity
 4. 3.3: Formula Masses
 5. 3.4: Avogadro's Number and the Mole
 6. 3.5: Empirical Formulas from Analysis
 7. 3.6: Quantitative Information from Balanced Equations
 8. 3.7: Limiting Reactants
 9. 3.E: Stoichiometry (Exercises)
10. 3.S: Stoichiometry (Summary)

 1. Chapter 4: Reactions in Aqueous Solution
 2. 4.1: General Properties of Aqueous Solutions
 3. 4.2: Precipitation Reactions
 4. 4.3: Acid-Base Reactions
 5. 4.4: Oxidation-Reduction Reactions
 6. 4.5: Concentration of Solutions
 7. 4.6: Solution Stoichiometry and Chemical Analysis
 8. 4.E: Reactions in Aqueous Solution (Exercises)
 9. 4.S: Reactions in Aqueous Solution (Summary)

 • 4

1. Chapter 5: Thermochemistry
2. 5.1: The Nature of Energy
3. 5.2: The First Law of Thermodynamics
 4. 5.3: Enthalpy
 5. 5.4: Enthalpy of Reaction
 6. 5.5: Calorimetry
 7. 5.6: Hess’s Law
 8. 5.7: Enthalpies of Formation
 9. 5.8: Foods and Fuels
10. 5.E: Thermochemistry (Exercises)
11. 5.S: Thermochemistry (Summary)

 • 5

1. Chapter 6: Electronic Structure of Atoms
2. 6.1: The Wave Nature of Light
3. 6.2: Quantized Energy and Photons
4. 6.3: Line Spectra and the Bohr Model
5. 6.4: The Wave Behavior of Matter
6. 6.5: Quantum Mechanics and Atomic Orbitals
 7. 6.6: 3D Representation of Orbitals
 8. 6.7: Many-Electron Atoms
 9. 6.8: Electron Configurations
10. 6.9: Electron Configurations and the Periodic Table
11. 6.E: Electronic Structure of Atoms (Exercises)
12. 6.S: Electronic Structure of Atoms (Summary)

 • 6
Chapter 7: Periodic Properties of the Elements

7.1: Development of the Periodic Table
7.2: Effective Nuclear Charge
7.3: Sizes of Atoms and Ions
7.4: Ionization Energy
7.5: Electron Affinities
7.6: Metals, Nonmetals, and Metalloids
7.7: Group Trends for the Active Metals
7.8: Group Trends for Selected Nonmetals
7.9: Periodic Properties of the Elements (Exercises)
7.10: Periodic Properties of the Elements (Summary)

Chapter 8: Basic Concepts of Chemical Bonding

8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule
8.2: Ionic Bonding
8.3: Covalent Bonding
8.4: Bond Polarity and Electronegativity
8.5: Drawing Lewis Structures
8.6: Resonance Structures
8.7: Exceptions to the Octet Rule
8.8: Strength of Covalent Bonds
8.9: Basic Concepts of Chemical Bonding (Exercises)
8.10: Basic Concepts of Chemical Bonding (Summary)

Chapter 9: Molecular Geometry and Bonding Theories

9.1: Molecular Shapes
9.2: The VSEPR Model
9.3: Molecular Shape and Molecular Polarity
9.4: Covalent Bonding and Orbital Overlap
9.5: Hybrid Orbitals
9.6: Multiple Bonds
9.7: Molecular Orbitals
9.8: Second-Row Diatomic Molecules
9.9: Second-Row Diatomic Molecules (Exercises)
9.10: Second-Row Diatomic Molecules (Summary)
1. Chapter 13: Properties of Solutions
 2. 13.1: The Solution Process
 3. 13.2: Saturated Solutions and Solubility
 4. 13.3: Factors Affecting Solubility
 5. 13.4: Ways of Expressing Concentration
 6. 13.5: Colligative Properties
 7. 13.6: Colloids
 8. 13.E: Properties of Solutions (Exercises)
 9. 13.S: Properties of Solutions (Summary)

14

1. Chapter 14: Chemical Kinetics
 2. 14.1: Factors that Affect Reaction Rates
 3. 14.2: Reaction Rates
 4. 14.3: Concentration and Rates (Differential Rate Laws)
 5. 14.4: The Change of Concentration with Time (Integrated Rate Laws)
 6. 14.5: Temperature and Rate
 7. 14.6: Reaction Mechanisms
 8. 14.7: Catalysis
 9. 14.E: Exercises
 10. 14.S: Chemical Kinetics (Summary)

15

1. Chapter 15: Chemical Equilibrium
 2. 15.1: The Concept of Equilibrium
 3. 15.2: The Equilibrium Constant
 4. 15.3: Interpreting & Working with Equilibrium Constants
 5. 15.4: Heterogeneous Equilibria
 6. 15.5: Calculating Equilibrium Constants
 7. 15.6: Applications of Equilibrium Constants
 8. 15.7: Le Châtelier's Principle
 9. 15.E: Exercises
 10. 15.S: Chemical Equilibrium (Summary)

16

1. Chapter 16: Acid–Base Equilibria
 2. 16.1: Acids and Bases: A Brief Review
 3. 16.2: Brønsted–Lowry Acids and Bases
 4. 16.3: The Autoionization of Water
5. **19.4: Entropy Changes in Chemical Reactions**
6. **19.5: Gibbs Free Energy**
7. **19.6: Free Energy and Temperature**
8. **19.7: Free Energy and the Equilibrium Constant**
9. **19.E: Chemical Thermodynamics (Exercises)**

• **20**
1. **Chapter 20: Electrochemistry**
2. **20.1: Oxidation States & Redox Reactions**
3. **20.2: Balanced Oxidation-Reduction Equations**
4. **20.3: Voltaic Cells**
5. **20.4: Cell Potential Under Standard Conditions**
6. **20.5: Gibbs Energy and Redox Reactions**
7. **20.6: Cell Potential Under Nonstandard Conditions**
8. **20.7: Batteries and Fuel Cells**
9. **20.8: Corrosion**
10. **20.9: Electrolysis**
11. **20.E: Electrochemistry (Exercises)**

• **21**
1. **Chapter 21: Nuclear Chemistry**
2. **21.1: Radioactivity**
3. **21.2: Patterns of Nuclear Stability**
4. **21.3: Nuclear Transmutations**
5. **21.4: Rates of Radioactive Decay**
6. **21.6: Energy Changes in Nuclear Reactions**
7. **21.7: Nuclear Fission**
8. **21.8: Nuclear Fusion**
9. **21.9: Biological Effects of Radiation**
10. **21.E: Exercises**
11. **21.S: Nuclear Chemistry (Summary)**

• **22**
1. **Chapter 22: Chemistry of the Nonmetals**
2. **22.1: General Concepts: Periodic Trends and Reactions**
3. **22.2: Hydrogen**
4. **22.3: Group 18: Nobel Gases**
5. **22.4: Group 17: The Halogens**
6. **22.5: Oxygen**
7. 22.6: The Other Group 16 Elements: S, Se, Te, and Po
8. 22.7: Nitrogen
9. 22.8: The Other Group 15 Elements: P, As, Sb, and Bi
10. 22.9: Carbon
11. 22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb
12. 22.11: Boron
13. 22.E: Chemistry of the Nonmetals (Exercises)
14. 22.S: Chemistry of the Nonmetals (Summary)

• 23

1. Chapter 23: Metals and Metallurgy
2. 23.1: Occurrence and Distribution of Metals
 3. 23.2: Pyrometallurgy
 4. 23.3: Hydrometallurgy
 5. 23.4: Electrometallurgy
 6. 23.5: Metallic Bonding
 7. 23.6: Alloys
 8. 23.7: Transition Metals
9. 23.8: Chemistry of Selected Transition Metals
10. 23.E: Metals and Metallurgy (Exercises)

• 24

1. Chapter 24: Chemistry of Coordination Chemistry
2. 24.1: Metal Complexes
3. 24.2: Ligands with more than one Donor Atom
4. 24.3: Nomenclature of Coordination Chemistry
5. 24.4: Isomerization
6. 24.5: Color and Magnetism
7. 24.6: Crystal Field Theory
8. 24.E: Chemistry of Coordination Chemistry (Exercises)

• 25

1. Chapter 25: Chemistry of Life: Organic and Biological Chemistry
2. 25.1: General Characteristics of Organic Molecules
3. 25.2: Introduction to Hydrocarbons
4. 25.3: Alkanes
5. 25.4: Unsaturated Hydrocarbons
6. 25.5: Functional Groups
7. 25.6: Compounds with a Carbonyl Group
8. 25.7: Chirality in Organic Chemistry
9. 25.8: Introduction to Biochemistry
10. 25.9: Proteins
11. 25.10: Carbohydrates
12. 25.11: Nucleic Acids
13. 25.E: Organic and Biological Chemistry (Exercises)
14. 25.S: Organic and Biological Chemistry (Summary)

• Homework
1. 1.E: Matter and Measurement (Exercises)
2. 2.E: Atoms, Molecules, and Ions (Exercises)
3. 3.E: Stoichiometry (Exercises)
4. 4.E: Aqueous Reactions (Exercises)
5. 5.E: Thermochemistry (Exercises)
6. 6.E: Electronic Structure (Exercises)
7. 7.E: Periodic Trends (Exercises)
8. 8.E: Chemical Bonding Basics (Exercises)
9. 9.E: Bonding Theories (Exercises)
10. 10.E: Gases (Exercises)
11. 11.E: Liquids and Intermolecular Forces (Exercises)
13. 13.E: Properties of Solutions (Exercises)
15. 15.E: Chemical Equilibrium (Exercises)
16. 16.E: Acid–Base Equilibria (Exercises)
17. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
18. 18.E: Chemistry of the Environment (Exercises)
19. 19.E: Chemical Thermodynamics (Exercises)
20. 20.E: Electrochemistry (Exercises)
21. 21.E: Nuclear Chemistry (Exercises)
22. 22.E: Chemistry of the Nonmetals (Exercises)
23. 23.E: Metals and Metallurgy (Exercises)
24. 24.E: Chemistry of Coordination Chemistry (Exercises)
25. 25.E: Organic and Biological Chemistry (Exercises)

These is a summary of key concepts of the chapter in the Textmap created for "Chemistry: The Central Science" by Brown et al.
14.1: Factors that Affect Reaction Rates

chemical kinetics – area of chemistry dealing with speeds/rates of reactions

- rates of reactions affected by four factors
 1. concentrations of reactants
 2. temperature at which reaction occurs
 3. presence of a catalyst
 4. surface area of solid or liquid reactants and/or catalysts

14.2: Reaction Rates

- **reaction rate** – speed of a chemical reaction

14.1.1 Rates in Terms of Concentrations

- rate calculated in units of M/s
- brackets around a substance indicate the concentration
- **instantaneous rate** – rate at a particular time
- instantaneous rate obtained from the straight line tangent that touches the curve at a specific point
- slopes give instantaneous rates
- instantaneous rate also referred to as the rate

14.1.2 Reaction Rates and Stoichiometry

- for the reaction

14.3: Concentration and Rate

- equation used only if C and D only substances formed
- \[\text{Rate} = k[A][B] \]
• **Rate law** – expression that shows that rate depends on concentrations of reactants
 • K = rate constant

14.2.1 Reaction Order

- Rate = \(k[\text{reactant 1}]^m[\text{reactant 2}]^n \)
 - \(m, n \) are called reaction orders
 - \(m+n \), overall reaction order
 - reaction orders do not have to correspond with coefficients in balanced equation
 - values of reaction order determined experimentally
 - reaction order can be fractional or negative

14.2.2 Units of Rates Constants

- units of rate constant depend on overall reaction order of rate law
 - for reaction of second order overall
 - units of rate = (units of rate constant)(units of concentration)^2
 - units of rate constant = \(M^{-1}s^{-1} \)

14.2.3 Using Initial Rates to Determine Rate Laws

- **zero order** – no change in rate when concentration changed
 - **first order** – proportional changes in rate
 - **second order** – increase rate by \(2^2 \) or \(3^3 \), etc...
 - rate constant does not depend on concentration

14.4: The Change of Concentration with Time

- rate laws can be converted into equations that give concentrations of reactants or products

14.3.1 First-Order Reactions

- corresponds to \(y = mx + b \)
 - equations used to determine:
 - 1) concentration of reactant remaining at any time
• 2) time required for given fraction of sample to react
• 3) time required for reactant concentration to reach a certain level

14.3.2 Half-Life

• half-life of first order reaction

• half-life – time required for concentration of reactant to drop by one half initial value
• \(t_{1/2} \) of first order independent of initial concentrations
• half-life same at any given time of reaction
• in first order reaction – concentrations of reactant decreases by \(\frac{1}{2} \) in each series of regularly spaced time intervals

14.3.3 Second-Order Reactions

• rate depends on reactant concentration raised to second power or concentrations of two different reactant each
 raised to first power
• Rate = \(k[A]^2 \)

• half life dependent on initial concentration of reactant

14.5: Temperature and Rate

• chemiluminescent reaction – reaction that produces light
• rate constant must increase with increasing temperature

14.4.1 The Collision Model

• collision model – molecules must collide to react
• greater number of collisions the greater the reaction rate
• for most reactions only small amount of collisions lead to a reaction

14.4.2 Activation Energy

• Svante Arrhenius
• Molecules must have a minimum amount of energy to react
• Energy comes from kinetic energy of collisions
• Kinetic energy used to break bonds
• Activation energy, E_a – minimum energy required to initiate a chemical reaction
• Activated complex or transition state – atoms at the top of the energy barrier
• Rate depends on E_a
• Lower E_a means faster reaction
• Reactions occur with collisions and orientation of molecules

14.4.3 The Arrhenius Equation

• reaction rate data:

• (Arrhenius Equation)
• $k = \text{rate constant, } E_a = \text{activation energy, } R = \text{gas constant (8.314 J/mol K), } T = \text{absolute temperature, } A = \text{frequency factor}$
• A relates to frequency of collisions, favorable orientations

• In k vs 1/t graph has slope $-E_a/R$ and y-intercept $\ln A$
• for two temperatures:

• used to calculate rate constant, k_1 and T_1

14.6: Reaction Mechanisms

• reaction mechanism – process by which a reaction occurs

14.5.1 Elementary Steps

• elementary steps – each step in a reaction
• molecularity – if only one molecule involved in step
• unimolecular – if only one molecule involved in step
• bimolecular – elementary step involving collision of two reactant molecules
• termolecular – elementary step involving simultaneous collision of three molecules
• elementary steps in multistep mechanism must always add to give chemical equation of overall process
• intermediate – product formed in one step and consumed in a later step

14.5.2 Rate Laws of Elementary Steps

• if reaction is known to be an elementary step then the rate law is known
• rate of unimolecular step is first order (Rate = k[A])
• rate of bimolecular steps is second order (Rate = k[A][B])
• first order in [A] and [B]
• if double [A] than number of collisions of A and B will double

14.5.3 Rate laws of multistep mechanisms

• rate-determining step – slowest elementary step
• determines rate law of overall reaction

14.5.4 Mechanisms with an Initial First Step

• intermediates usually unstable, low and unknown concentrations
• whenever a fast step precedes a slow one, solve for concentration of intermediate by assuming that equilibrium is established in fast step

14.7: Catalysis

• catalyst – substance that changes speed of chemical reaction without undergoing a permanent chemical change

14.6.1 Homogeneous Catalysis

• homogeneous catalyst – catalyst that is present in same phase as reacting molecule
• catalysts alter E_a or A
• generally catalysts lowers overall E_a for chemical reaction
• catalysts provides a different mechanism for reaction

14.6.2 Heterogeneous Catalysis

• exists in different phase from reactants
• initial step in heterogeneous catalyst is adsorption
• adsorption – binding of molecules to surface
• adsorption occurs because ions/atoms at surface of solid extremely reactive

14.6.3 Enzymes

• biological catalysts
• large protein molecules with molecular weights 10,000 – 1 million amu
• catalase – enzyme in blood and liver that decomposes hydrogen peroxide into water and oxygen
• substrates – substances that undergo reaction at the active site
• lock-and-key model – substrate molecules bind specifically to the active site
• enzyme-substrate complex – combination of enzyme and substrate
• binding between enzyme and substrate involves intermolecular forces (dipole-dipole, hydrogen bonding, and London dispersion forces)
• product from reaction leaves enzyme allowing for another substrate to enter enzyme
• enzyme inhibitors – molecules that bind strongly to enzymes
• turnover number – number of catalyzed reactions occurring at a particular active site
• large turnover numbers = low activation energies