Chapter 1: Introduction: Matter and Measurement
1. The Study of Chemistry
2. Classification of Matter
3. Properties of Matter
4. Units of Measurement
5. Uncertainty in Measurement
6. Dimensional Analysis
7. Matter and Measurement (Exercises)
8. Matter and Measurement (Summary)

Chapter 2: Atoms, Molecules, and Ions
1. The Atomic Theory of Matter
2. The Discovery of Atomic Structure
3. The Modern View of Atomic Structure
4. Atomic Mass
5. The Periodic Table
6. Molecules and Molecular Compounds
7. Ions and Ionic Compounds
8. Naming Inorganic Compounds
9. Some Simple Organic Compounds
10. Atoms, Molecules, and Ions (Exercises)
11. Atoms, Molecules, and Ions (Summary)

Chapter 3: Stoichiometry: Chemical Formulas and Equations
1. Chemical Equations
2. Some Simple Patterns of Chemical Reactivity
3. Formula Masses
4. Avogadro's Number and the Mole
5. Empirical Formulas from Analysis
6. Quantitative Information from Balanced Equations
7. Limiting Reactants
8. Stoichiometry (Exercises)
10. 3.S: Stoichiometry (Summary)

 • 4

1. Chapter 4: Reactions in Aqueous Solution
2. 4.1: General Properties of Aqueous Solutions
3. 4.2: Precipitation Reactions
4. 4.3: Acid-Base Reactions
5. 4.4: Oxidation-Reduction Reactions
6. 4.5: Concentration of Solutions
7. 4.6: Solution Stoichiometry and Chemical Analysis
8. 4.E: Reactions in Aqueous Solution (Exercises)
9. 4.S: Reactions in Aqueous Solution (Summary)

 • 5

1. Chapter 5: Thermochemistry
2. 5.1: The Nature of Energy
3. 5.2: The First Law of Thermodynamics
4. 5.3: Enthalpy
5. 5.4: Enthalpy of Reaction
6. 5.5: Calorimetry
7. 5.6: Hess’s Law
8. 5.7: Enthalpies of Formation
9. 5.8: Foods and Fuels
10. 5.E: Thermochemistry (Exercises)
11. 5.S: Thermochemistry (Summary)

 • 6

1. Chapter 6: Electronic Structure of Atoms
2. 6.1: The Wave Nature of Light
3. 6.2: Quantized Energy and Photons
4. 6.3: Line Spectra and the Bohr Model
5. 6.4: The Wave Behavior of Matter
6. 6.5: Quantum Mechanics and Atomic Orbitals
7. 6.6: 3D Representation of Orbitals
8. 6.7: Many-Electron Atoms
9. 6.8: Electron Configurations
10. 6.9: Electron Configurations and the Periodic Table
11. 6.E: Electronic Structure of Atoms (Exercises)
12. 6.S: Electronic Structure of Atoms (Summary)
1. **Chapter 7: Periodic Properties of the Elements**
 2. **7.1: Development of the Periodic Table**
 3. **7.2: Effective Nuclear Charge**
 4. **7.3: Sizes of Atoms and Ions**
 5. **7.4: Ionization Energy**
 6. **7.5: Electron Affinities**
 7. **7.6: Metals, Nonmetals, and Metalloids**
 8. **7.7: Group Trends for the Active Metals**
 9. **7.8: Group Trends for Selected Nonmetals**

2. **Chapter 8: Basic Concepts of Chemical Bonding**
 2. **8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule**
 3. **8.2: Ionic Bonding**
 4. **8.3: Covalent Bonding**
 5. **8.4: Bond Polarity and Electronegativity**
 6. **8.5: Drawing Lewis Structures**
 7. **8.6: Resonance Structures**
 8. **8.7: Exceptions to the Octet Rule**
 9. **8.8: Strength of Covalent Bonds**
10. **8.E: Basic Concepts of Chemical Bonding (Exercises)**
11. **8.S: Basic Concepts of Chemical Bonding (Summary)**

3. **Chapter 9: Molecular Geometry and Bonding Theories**
 2. **9.1: Molecular Shapes**
 3. **9.2: The VSEPR Model**
 4. **9.3: Molecular Shape and Molecular Polarity**
 5. **9.4: Covalent Bonding and Orbital Overlap**
 6. **9.5: Hybrid Orbitals**
 7. **9.6: Multiple Bonds**
 8. **9.7: Molecular Orbitals**
 9. **9.8: Second-Row Diatomic Molecules**
10. **9.E: Exercises**
11. **9.S: Molecular Geometry and Bonding Theories (Summary)**
1. Chapter 13: Properties of Solutions
 2. 13.1: The Solution Process
 3. 13.2: Saturated Solutions and Solubility
 4. 13.3: Factors Affecting Solubility
 5. 13.4: Ways of Expressing Concentration
 6. 13.5: Colligative Properties
 7. 13.6: Colloids
 8. 13.E: Properties of Solutions (Exercises)
 9. 13.S: Properties of Solutions (Summary)

1. Chapter 14: Chemical Kinetics
 2. 14.1: Factors that Affect Reaction Rates
 3. 14.2: Reaction Rates
 4. 14.3: Concentration and Rates (Differential Rate Laws)
 5. 14.4: The Change of Concentration with Time (Integrated Rate Laws)
 6. 14.5: Temperature and Rate
 7. 14.6: Reaction Mechanisms
 8. 14.7: Catalysis
 9. 14.E: Exercises
 10. 14.S: Chemical Kinetics (Summary)

1. Chapter 15: Chemical Equilibrium
 2. 15.1: The Concept of Equilibrium
 3. 15.2: The Equilibrium Constant
 4. 15.3: Interpreting & Working with Equilibrium Constants
 5. 15.4: Heterogeneous Equilibria
 6. 15.5: Calculating Equilibrium Constants
 7. 15.6: Applications of Equilibrium Constants
 8. 15.7: Le Châtelier's Principle
 9. 15.E: Exercises
 10. 15.S: Chemical Equilibrium (Summary)

1. Chapter 16: Acid–Base Equilibria
 2. 16.1: Acids and Bases: A Brief Review
 3. 16.2: Brønsted–Lowry Acids and Bases
 4. 16.3: The Autoionization of Water
5. **19.4: Entropy Changes in Chemical Reactions**
 6. **19.5: Gibbs Free Energy**
 7. **19.6: Free Energy and Temperature**
8. **19.7: Free Energy and the Equilibrium Constant**
9. **19.E: Chemical Thermodynamics (Exercises)**

• 20
 1. **Chapter 20: Electrochemistry**
 2. **20.1: Oxidation States & Redox Reactions**
 3. **20.2: Balanced Oxidation-Reduction Equations**
 4. **20.3: Voltaic Cells**
 5. **20.4: Cell Potential Under Standard Conditions**
 6. **20.5: Gibbs Energy and Redox Reactions**
7. **20.6: Cell Potential Under Nonstandard Conditions**
 8. **20.7: Batteries and Fuel Cells**
 9. **20.8: Corrosion**
 10. **20.9: Electrolysis**
11. **20.E: Electrochemistry (Exercises)**

• 21
 1. **Chapter 21: Nuclear Chemistry**
 2. **21.1: Radioactivity**
 3. **21.2: Patterns of Nuclear Stability**
 4. **21.3: Nuclear Transmutations**
 5. **21.4: Rates of Radioactive Decay**
7. **21.6: Energy Changes in Nuclear Reactions**
 7. **21.7: Nuclear Fission**
 8. **21.8: Nuclear Fusion**
9. **21.9: Biological Effects of Radiation**
 10. **21.E: Exercises**
11. **21.S: Nuclear Chemistry (Summary)**

• 22
 1. **Chapter 22: Chemistry of the Nonmetals**
 2. **22.1: General Concepts: Periodic Trends and Reactions**
 3. **22.2: Hydrogen**
 4. **22.3: Group 18: Nobel Gases**
 5. **22.4: Group 17: The Halogens**
 6. **22.5: Oxygen**
7. **22.6: The Other Group 16 Elements: S, Se, Te, and Po**
8. **22.7: Nitrogen**
9. **22.8: The Other Group 15 Elements: P, As, Sb, and Bi**
10. **22.9: Carbon**
11. **22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb**
12. **22.11: Boron**
13. **22.E: Chemistry of the Nonmetals (Exercises)**
14. **22.S: Chemistry of the Nonmetals (Summary)**

• **23**

1. **Chapter 23: Metals and Metallurgy**
2. **23.1: Occurrence and Distribution of Metals**
 3. **23.2: Pyrometallurgy**
 4. **23.3: Hydrometallurgy**
 5. **23.4: Electrometallurgy**
 6. **23.5: Metallic Bonding**
 7. **23.6: Alloys**
 8. **23.7: Transition Metals**
9. **23.8: Chemistry of Selected Transition Metals**

• **24**

1. **Chapter 24: Chemistry of Coordination Chemistry**
2. **24.1: Metal Complexes**
3. **24.2: Ligands with more than one Donor Atom**
4. **24.3: Nomenclature of Coordination Chemistry**
5. **24.4: Isomerization**
6. **24.5: Color and Magnetism**
7. **24.6: Crystal Field Theory**
8. **24.E: Chemistry of Coordination Chemistry (Exercises)**

• **25**

1. **Chapter 25: Chemistry of Life: Organic and Biological Chemistry**
2. **25.1: General Characteristics of Organic Molecules**
3. **25.2: Introduction to Hydrocarbons**
4. **25.3: Alkanes**
5. **25.4: Unsaturated Hydrocarbons**
6. **25.5: Functional Groups**
7. **25.6: Compounds with a Carbonyl Group**
8. 25.7: Chirality in Organic Chemistry
9. 25.8: Introduction to Biochemistry
10. 25.9: Proteins
11. 25.10: Carbohydrates
12. 25.11: Nucleic Acids
13. 25.E: Organic and Biological Chemistry (Exercises)
14. 25.S: Organic and Biological Chemistry (Summary)

• Homework

1. 1.E: Matter and Measurement (Exercises)
2. 2.E: Atoms, Molecules, and Ions (Exercises)
3. 3.E: Stoichiometry (Exercises)
4. 4.E: Aqueous Reactions (Exercises)
5. 5.E: Thermochemistry (Exercises)
6. 6.E: Electronic Structure (Exercises)
7. 7.E: Periodic Trends (Exercises)
8. 8.E: Chemical Bonding Basics (Exercises)
9. 9.E: Bonding Theories (Exercises)
10. 10.E: Gases (Exercises)
11. 11.E: Liquids and Intermolecular Forces (Exercises)
13. 13.E: Properties of Solutions (Exercises)
15. 15.E: Chemical Equilibrium (Exercises)
16. 16.E: Acid–Base Equilibria (Exercises)
17. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
18. 18.E: Chemistry of the Environment (Exercises)
19. 19.E: Chemical Thermodynamics (Exercises)
20. 20.E: Electrochemistry (Exercises)
21. 21.E: Nuclear Chemistry (Exercises)
22. 22.E: Chemistry of the Nonmetals (Exercises)
23. 23.E: Metals and Metallurgy (Exercises)
24. 24.E: Chemistry of Coordination Chemistry (Exercises)
25. 25.E: Organic and Biological Chemistry (Exercises)

These is a summary of key concepts of the chapter in the Textmap created for "Chemistry: The Central Science" by Brown et al.
8.1: CHEMICAL BONDS, LEWIS SYMBOLS AND THE OCTET RULE

- **Ionic bond**: bond formed on the basis of electrostatic forces that exist between oppositely charged ions. The ions are formed from atoms by transfer of one or more electrons
- **Covalent bond**: bond formed between two or more atoms by a sharing of electrons
- **Metallic bond**: bonding in which the bonding electrons are relatively free to move throughout the 3D structure
- **Electron dot symbols**: aka Lewis symbols; simple and convenient way of showing the valence electrons of atoms and keeping track of them in the course of bond formation
- **Octet rule**: atoms tend to lose or gain electrons until they are surrounded by 8 valence electrons

8.2: IONIC BONDING

Energies of Ionic Bond Formation

The formation of ionic compounds is very exothermic

Removing an electron form an atom, such as Na, is endothermic because energy needs to be used to overcome the attractive forces within the atom. Adding an electron is the opposite process and releases lots of energy

The principal reason that ionic compounds are stable is the attraction between ions of unlike charge. This attraction draws the ions together, releasing energy and causing the ions to form a solid array (lattice)

Lattice energy: energy required to separate completely a mole of a solid ionic compounds into its gaseous ions

Large values of lattice energy mean that the ions are strongly attracted to one another

Energy released by the attraction between the ions of unlike charges more than makes up for the endothermic nature of ionization energies, making the formation of ionic compounds an exothermic process

\[E = k \frac{Q_1Q_2}{d}\]

- **E** = potential energy of two interacting charged particles
- **Q_1** and **Q_2** = charges on the particles
- **D** = distance between the particles
- **K** = constant; 8.99 \times 10^9 Jm/C^2

For a given arrangement of ions, the lattice energy increases as the charges of ions increase and as their radii decrease. The magnitude of lattice energies depends primarily on the ionic charges because ionic radii do not vary over a wide range.

Electron Configurations of Ions
Many ions tend to have noblegas electron configurations. This is why Na can have a +1 charge, but not a +2 one. Once an ion has reached noblegas configuration, it wants to stay there.

- Na: \(1s^2 \ 2s^2 \ 2p^6 \ 3s^1 = [\text{Ne}] \ 3s^1\)
- \(\text{Na}^+: \ 1s^2 \ 2s^2 \ 2p^6 = [\text{Ne}]\)
- \(\text{Na}^{2+}: \ 1s^2 \ 2s^2 \ 2p^5\)

Similarly, addition of electrons to nonmetals is either exothermic or slightly endothermic as long as electrons are being added to the valence shell. Further addition of electrons requires tremendous amounts of energy; more than is available from the lattice energy

- Cl: \(1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5 = [\text{Ne}] \ 3s^2 \ 3p^5\)
- \(\text{Cl}^+: \ 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 = [\text{Ar}]\)
- \(\text{Cl}^{2+}: \ 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^1 = [\text{Ar}]\)

The lattice energies of ionic compounds are generally large enough to compensate for the loss of up to only 3 electrons from atoms. Thus we find cations only having charges of +1, +2, or +3.

Because most transition metals have more than 3 electrons beyond a noblegas core, attainment of a noblegas configuration for these ions is usually impossible.

When a positive ion is formed from an atom, electrons are always lost first from the subshell with the largest value of \(n\). Thus, a transition metal always loses the outer \(s\) electrons before it loses electrons from the underlying \(d\) subshell.

8.3 Sizes of Ions

Sizes of ions are important in determining both the way in which the ions pack in a solid and the lattice energy of the solid. It is also a major factor governing the properties of ions in solution

The size of an electron depends on its nuclear charge, the number of electrons it possesses, and the orbitals in which the outershell electrons reside

Positive ions are formed by removing 1 or more electrons from the outermost region of the atom. Thus, the formation of a cation not only vacates the most spatially extended orbitals, it also decreases the total electronelectron repulsions. Hence, cations are smaller than the original atoms from which they came.

The opposite happens when speaking of negative ions. An added electron increases electronelectron repulsions and causes the electrons to spread out more in space.

For ions of the same charge, size increases as we go down a group

8.3: COVALENT BONDING

Ionic substances are usually brittle with high melting points. They are usually crystalline, meaning that they have flat
surfaces that make characteristic angles with one another.

Covalent bond: chemical bond formed by sharing a pair of electrons

Lewis structure: structure that represents bonding using dots for unpaired electrons and lines for bonds

For nonmetals, the number of valence electrons is the same as the group number

Knowing this, we can predict that an element in Group 7A would need one covalent bond in order to get an octet, an element in Group 6A would need two, and so on.

Multiple Bonds

- **Single bond**: sharing of one pair of electrons, one covalent bond
- **Double bond**: two shared electrons

Distance between bonded atoms decreases as the number of shared electron pairs increases

8.4: BOND POLARITY AND ELECTRONEGATIVITY

- **Bond polarity**: measure of how equally the electrons are shared between the atoms in a chemical bond
- **Nonpolar bond**: one in which the electrons are shared equally between the two atoms
- **Polar covalent bond**: one of the atoms exerts a greater attraction for the electron than the other

Electronegativity

Used to estimate whether a bond will be nonpolar, polar covalent, or ionic

Electronegativity: ability of an atom in a molecule to attract electrons to itself

An atom with a very negative electron affinity and high ionization energy will both attract electrons from other atoms and resist having its electrons attracted away; it will be highly electronegative

Highest electronegativity = 4.0 (Fluorine), lowest = 0.7 (Cesium)

Electronegativity increases form left to right, and usually decreases with increasing atomic number in any one group

Electronegativity and Bond Polarity

Differences in electronegativities:

- **Nonpolar = 0 – 0.4**
- **Polar covalent = 0.4 – 1.6**
- **Ionic = > 1.6 (>50% = ionic)**
δ⁺ and δ⁻: "delta sign"; represent partial positive and negative charge. The atom with the δ is the more electronegative one.

8.5: DRAWING LEWIS STRUCTURES

1. Sum the valence electrons from all atoms. For an anion, add an electron to the total negative charge. For a cation, subtract an electron.
2. Write the symbols for the atoms to show which atoms are attached to which, and connect them with a single bond.
3. Complete the octets of the atoms bonded to the central atom.
4. Place any leftover electrons on the central atom, even if doing so results in more than an octet.
5. If there are not enough electrons to give the central atom an octet, try multiple bonds.

8.6: RESONANCE STRUCTURES

Resonance structures (resonance forms) are individual Lewis structures in cases where two or more Lewis structures are equally good descriptions of a single molecule. If a molecule (or ion) has two or more resonance structures, the molecule is a blend of these structures. The molecule does not oscillate rapidly between two or more different forms.

8.7: EXCEPTIONS TO THE OCTET RULE

1. Molecules with an odd number of electrons
2. Molecules in which an atom has less than an octet
3. Molecules in which an atom has more than an octet

Odd Number of Electrons

In a few molecules, such as ClO₂, NO, and NO₂, the number of electrons is odd. In NO for example, there are 5+6 = 11 valence electron. Hence, complete pairing of these electrons is impossible and an octet around each atom cannot be achieved.

Less Than an Octet

Second type of exception occurs when there are fewer than eight electrons around an atom in a molecule or ion. Relatively rare situation; most often encountered in compounds of Boron and Beryllium. For example, let's consider Boron Trifluoride, BF₃.
There are 6 electrons around the Boron atom. We can form a double bond between Boron and any of the 3 Fluorine atoms (3 possible resonance structures).

However, by doing so, we forced a Fluorine atom to share additional electrons with Boron. This would make the F atom to have a +1 charge, and the Boron atom to have a –1 charge, which is extremely unfavorable.

We then conclude that the structures containing the double bonds are less important than the one illustrated on the right. *Since in this case Boron has only 6 valence electrons, it will react violently with molecules that have an unshared pair of electrons.*

More Than an Octet

The octet rule works as well as it does because the representative elements usually employ only an *ns* and three *np* valence shell orbitals in bonding, and these hold eight electrons.

Because elements of the second period have only 2s and 2p orbitals, they cannot have more than an octet of electrons in their valence shells. However, from the third period on, the elements have unfilled *nd* orbitals that can be used in bonding.

Size also plays an important role in determining whether an atom can accommodate more than eight electrons. The larger the central atom, the larger the number of atoms that can surround it. The size of the surrounding atoms is also important. Expanded valence shells occur most often when the central atom is bonded to the smallest and most electronegative atoms.

8.8: Strengths of Covalent Bonds

Bond dissociation energy: aka *bond energy*; enthalpy change, ΔH, required to break a particular bond in a mole of gaseous substance.

For polyatomic molecules, we must often utilize average bond energies.

Bond energy is *always* positive, the greater the bond energy, the stronger the bond

A molecule with strong bonds generally has less tendency to undergo chemical change than does one with weak bonds

Bond Energies and the Enthalpy of Reactions

\[
\Delta H = \Sigma \text{ (bond energies of bonds broken)} - \Sigma \text{ (bond energies of bonds formed)}
\]
If $\Delta H > 0$, the reaction is endothermic.

If $\Delta H < 0$, the reaction is exothermic.

$$\text{Cl} – \text{Cl} \ (g) + \text{H} – \text{CH}_3 \ (g) \rightarrow \text{H} – \text{Cl} \ (g) + \text{Cl} – \text{CH}_3 \ (g)$$

Bonds broken: 1 mol Cl – Cl, 1 mol C – H

Bonds made: 1 mol H – Cl, 1 mol C – Cl

$$\Delta H = [D \ (\text{Cl} – \text{Cl}) + D(\text{C} – \text{H})] \ [D \ (\text{H} – \text{Cl}) + D \ (\text{Cl} – \text{Cl})]$$

$$= (242 \text{ kJ} + 413 \text{ kJ}) – (431 \text{ kJ} + 328 \text{ kJ})$$

$$= 104 \text{ kJ}$$

Bond Strength and Bond Length

As the number of bonds between a given element increase, the bond energy increases and the bond length decreases. Hence, the atoms are held more tightly and closely together. In general, *as the number of bonds between two atoms increases, the bond grows shorter and stronger.*

8.10 Oxidation Numbers

Oxidation Numbers: aka Oxidation states; a positive or negative whole number assigned to an element in a molecule or ion on the basis of a set of normal rules; to some degree it reflects the positive or negative character of an atom.

Oxidation numbers do NOT correspond to real charges on the atoms, EXCEPT in the special case of simple ionic substances.

1. **The oxidation form of an element in its elemental form is zero.**
2. **The oxidation number of a monoatomic ion is the same as its charge.** For example, the oxidation number of sodium in Na$^+$ is +1, and that of sulfur in S2 is –2.
3. **In binary compounds (those with two different elements), the element with greater electronegativity is assigned a negative oxidation number equal to its charge in simple ionic compounds the element.** For example, consider the oxidation state of Cl in PCl$_3$. Cl is more electronegative than P. In its simple ionic compounds, Cl appears as the ion Cl$. Thus, in PCl$_3$, Cl is assigned an oxidation number of –1.
4. **The sum of the oxidation numbers equals zero for an electrically neutral compound and equals the overall charge of the ionic species.** For example, PCl$_3$ is a neutral molecule. Thus, the sum of oxidation number of the P and Cl atoms must equal zero. Because the oxidation number of each Cl in this compound is –1 (rule 3), the oxidation number of P must be +3.

Group 1A elements are +1, Group 2A are +2, and Aluminum is +3.

The most electronegative element, F, is always found in the –1 oxidation state. Oxygen is usually in the –2 state, however it can be –1 in peroxides.
Hydrogen has an oxidation number of +1 when it is bonded to a more electronegative element (most nonmetals), and of −1 when bonded to less electronegative elements (most metals)

Oxidation Numbers and Nomenclature

Name of the less electronegative element is given first, followed by the name of the more electronegative element modified to have an \(-ide\) ending

Compounds of metals in higher oxidation states tend to be molecular rather than ionic