
Aluminum

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>28.3</td>
</tr>
<tr>
<td>Al(g)</td>
<td>330.0</td>
<td>289.4</td>
<td>164.6</td>
</tr>
<tr>
<td>AlCl(_3)(s)</td>
<td>−704.2</td>
<td>−628.8</td>
<td>109.3</td>
</tr>
<tr>
<td>Al(_2)O(_3)(s)</td>
<td>−1675.7</td>
<td>−1582.3</td>
<td>50.9</td>
</tr>
</tbody>
</table>

Barium

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>62.5</td>
</tr>
<tr>
<td>Ba(g)</td>
<td>180.0</td>
<td>146.0</td>
<td>170.2</td>
</tr>
<tr>
<td>BaO(s)</td>
<td>−548.0</td>
<td>−520.3</td>
<td>72.1</td>
</tr>
<tr>
<td>BaCO(_3)(s)</td>
<td>−1213.0</td>
<td>−1134.4</td>
<td>112.1</td>
</tr>
<tr>
<td>BaSO(_4)(s)</td>
<td>−1473.2</td>
<td>−1362.2</td>
<td>132.2</td>
</tr>
</tbody>
</table>

Beryllium

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Be(g)</td>
<td>324.0</td>
<td>286.6</td>
<td>136.3</td>
</tr>
<tr>
<td>Be(OH)(_2)(s)</td>
<td>−902.5</td>
<td>−815.0</td>
<td>45.5</td>
</tr>
<tr>
<td>BeO(s)</td>
<td>−609.4</td>
<td>−580.1</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Bismuth

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>56.7</td>
</tr>
<tr>
<td>Bi(g)</td>
<td>207.1</td>
<td>168.2</td>
<td>187.0</td>
</tr>
</tbody>
</table>
Bromine

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(g)</td>
<td>111.9</td>
<td>82.4</td>
<td>175.0</td>
</tr>
<tr>
<td>Br$_2$(l)</td>
<td>0.0</td>
<td>0.0</td>
<td>152.2</td>
</tr>
<tr>
<td>Br$^-$ (aq)</td>
<td>-121.6</td>
<td>-104.0</td>
<td>82.4</td>
</tr>
<tr>
<td>Br$_2$(g)</td>
<td>30.9</td>
<td>3.1</td>
<td>245.5</td>
</tr>
<tr>
<td>HBr(g)</td>
<td>-36.3</td>
<td>-53.4</td>
<td>198.7</td>
</tr>
<tr>
<td>HBr(aq)</td>
<td>-121.6</td>
<td>-104.0</td>
<td>82.4</td>
</tr>
</tbody>
</table>

Cadmium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>51.8</td>
</tr>
<tr>
<td>Cd(g)</td>
<td>111.8</td>
<td>—</td>
<td>167.7</td>
</tr>
<tr>
<td>CdCl$_2$(s)</td>
<td>-391.5</td>
<td>-343.9</td>
<td>115.3</td>
</tr>
<tr>
<td>CdS(s)</td>
<td>-161.9</td>
<td>-156.5</td>
<td>64.9</td>
</tr>
</tbody>
</table>

Calcium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>41.6</td>
</tr>
<tr>
<td>Ca(g)</td>
<td>177.8</td>
<td>144.0</td>
<td>154.9</td>
</tr>
<tr>
<td>CaCl$_2$(s)</td>
<td>-795.4</td>
<td>-748.8</td>
<td>108.4</td>
</tr>
<tr>
<td>CaF$_2$(s)</td>
<td>-1228.0</td>
<td>-1175.6</td>
<td>68.5</td>
</tr>
<tr>
<td>Ca(OH)$_2$(s)</td>
<td>-985.2</td>
<td>-897.5</td>
<td>83.4</td>
</tr>
<tr>
<td>CaO(s)</td>
<td>-634.9</td>
<td>-603.3</td>
<td>38.1</td>
</tr>
<tr>
<td>CaSO$_4$(s)</td>
<td>-1434.5</td>
<td>-1322.0</td>
<td>106.5</td>
</tr>
<tr>
<td>CaCO$_3$(s, calcite)</td>
<td>-1207.6</td>
<td>-1129.1</td>
<td>91.7</td>
</tr>
<tr>
<td>CaCO$_3$(s, aragonite)</td>
<td>-1207.8</td>
<td>-1128.2</td>
<td>88.0</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH° (kJ/mol)</td>
<td>ΔG° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>C(s, graphite)</td>
<td>0.0</td>
<td>0.0</td>
<td>5.7</td>
</tr>
<tr>
<td>C(s, diamond)</td>
<td>1.9</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>C(s, fullerene—C$_{60}$)</td>
<td>2327.0</td>
<td>2302.0</td>
<td>426.0</td>
</tr>
<tr>
<td>C(s, fullerene—C$_{70}$)</td>
<td>2555.0</td>
<td>2537.0</td>
<td>464.0</td>
</tr>
<tr>
<td>C(g)</td>
<td>716.7</td>
<td>671.3</td>
<td>158.1</td>
</tr>
<tr>
<td>C(g, fullerene—C$_{60}$)</td>
<td>2502.0</td>
<td>2442.0</td>
<td>544.0</td>
</tr>
<tr>
<td>C(g, fullerene—C$_{70}$)</td>
<td>2755.0</td>
<td>2692.0</td>
<td>614.0</td>
</tr>
<tr>
<td>CBr$_4$(s)</td>
<td>29.4</td>
<td>47.7</td>
<td>212.5</td>
</tr>
<tr>
<td>CBr$_4$(g)</td>
<td>83.9</td>
<td>67.0</td>
<td>358.1</td>
</tr>
<tr>
<td>CCl$_2$F$_2$(g)</td>
<td>−477.4</td>
<td>−439.4</td>
<td>300.8</td>
</tr>
<tr>
<td>CCl$_2$O(g)</td>
<td>−219.1</td>
<td>−204.9</td>
<td>283.5</td>
</tr>
<tr>
<td>CCl$_4$(l)</td>
<td>−128.2</td>
<td>−62.6</td>
<td>216.2</td>
</tr>
<tr>
<td>CCl$_4$(g)</td>
<td>−95.7</td>
<td>−53.6</td>
<td>309.9</td>
</tr>
<tr>
<td>CF$_4$(g)</td>
<td>−933.6</td>
<td>−888.3</td>
<td>261.6</td>
</tr>
<tr>
<td>CHCl$_3$(l)</td>
<td>−134.1</td>
<td>−73.7</td>
<td>201.7</td>
</tr>
<tr>
<td>CHCl$_3$(g)</td>
<td>−102.7</td>
<td>6.0</td>
<td>295.7</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$(l)</td>
<td>−124.2</td>
<td>—</td>
<td>177.8</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$(g)</td>
<td>−95.4</td>
<td>−68.9</td>
<td>270.2</td>
</tr>
<tr>
<td>CH$_3$Cl(g)</td>
<td>−81.9</td>
<td>−58.5</td>
<td>234.6</td>
</tr>
<tr>
<td>CH$_4$(g)</td>
<td>−74.6</td>
<td>−50.5</td>
<td>186.3</td>
</tr>
<tr>
<td>CH$_3$COOH(l)</td>
<td>−484.3</td>
<td>−389.9</td>
<td>159.8</td>
</tr>
<tr>
<td>CH$_3$OH(l)</td>
<td>−239.2</td>
<td>−166.6</td>
<td>126.8</td>
</tr>
<tr>
<td>CH$_3$OH(g)</td>
<td>−201.0</td>
<td>−162.3</td>
<td>239.9</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH_f° (kJ/mol)</td>
<td>ΔG_f° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>CH$_3$NH$_2$(l)</td>
<td>−47.3</td>
<td>35.7</td>
<td>150.2</td>
</tr>
<tr>
<td>CH$_3$NH$_2$(g)</td>
<td>−22.5</td>
<td>32.7</td>
<td>242.9</td>
</tr>
<tr>
<td>CH$_3$CN(l)</td>
<td>40.6</td>
<td>86.5</td>
<td>149.6</td>
</tr>
<tr>
<td>CH$_3$CN(g)</td>
<td>74.0</td>
<td>91.9</td>
<td>243.4</td>
</tr>
<tr>
<td>CO(g)</td>
<td>−110.5</td>
<td>−137.2</td>
<td>197.7</td>
</tr>
<tr>
<td>CO$_2$(g)</td>
<td>−393.5</td>
<td>−394.4</td>
<td>213.8</td>
</tr>
<tr>
<td>CS$_2$(l)</td>
<td>89.0</td>
<td>64.6</td>
<td>151.3</td>
</tr>
<tr>
<td>CS$_2$(g)</td>
<td>116.7</td>
<td>67.1</td>
<td>237.8</td>
</tr>
<tr>
<td>C$_2$H$_2$(g)</td>
<td>227.4</td>
<td>209.9</td>
<td>200.9</td>
</tr>
<tr>
<td>C$_2$H$_4$(g)</td>
<td>52.4</td>
<td>68.4</td>
<td>219.3</td>
</tr>
<tr>
<td>C$_2$H$_6$(g)</td>
<td>−84.0</td>
<td>−32.0</td>
<td>229.2</td>
</tr>
<tr>
<td>C$_3$H$_8$(g)</td>
<td>−103.8</td>
<td>−23.4</td>
<td>270.3</td>
</tr>
<tr>
<td>C$_3$H$_6$O$_3$(s) (lactic acid)</td>
<td>−694.1</td>
<td>−522.9</td>
<td>142.3</td>
</tr>
<tr>
<td>C$_6$H$_6$(l)</td>
<td>49.1</td>
<td>124.5</td>
<td>173.4</td>
</tr>
<tr>
<td>C$_6$H$_6$(g)</td>
<td>82.9</td>
<td>129.7</td>
<td>269.2</td>
</tr>
<tr>
<td>C6H${12}$O$_6$(s) (glucose)</td>
<td>−1273.3</td>
<td>−910.4</td>
<td>212.1</td>
</tr>
<tr>
<td>C$_2$H$_5$OH(l)</td>
<td>−277.6</td>
<td>−174.8</td>
<td>160.7</td>
</tr>
<tr>
<td>C$_2$H$_5$OH(g)</td>
<td>−234.8</td>
<td>−167.9</td>
<td>281.6</td>
</tr>
<tr>
<td>(CH$_3$)$_2$O(l)</td>
<td>−203.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(CH$_3$)$_2$O(g)</td>
<td>−184.1</td>
<td>−112.6</td>
<td>266.4</td>
</tr>
<tr>
<td>CH$_3$CO$_2^-$ (aq)</td>
<td>−486.0</td>
<td>−369.3</td>
<td>86.6</td>
</tr>
<tr>
<td>n-C${12}$H${26}$(l) (dodecane)</td>
<td>−350.9</td>
<td>28.1</td>
<td>490.6</td>
</tr>
</tbody>
</table>

Cesium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>Δ(H^\circ) (kJ/mol)</td>
<td>Δ(G^\circ) (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cs(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>85.2</td>
</tr>
<tr>
<td>Cs(g)</td>
<td>76.5</td>
<td>49.6</td>
<td>175.6</td>
</tr>
<tr>
<td>CsCl(s)</td>
<td>−443.0</td>
<td>−414.5</td>
<td>101.2</td>
</tr>
</tbody>
</table>

Chlorine

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(g)</td>
<td>121.3</td>
<td>105.3</td>
<td>165.2</td>
</tr>
<tr>
<td>Cl(_2)(g)</td>
<td>0.0</td>
<td>0.0</td>
<td>223.1</td>
</tr>
<tr>
<td>Cl(^-{\text{aq}})</td>
<td>−167.2</td>
<td>−131.2</td>
<td>56.5</td>
</tr>
<tr>
<td>HCl(g)</td>
<td>−92.3</td>
<td>−95.3</td>
<td>186.9</td>
</tr>
<tr>
<td>HCl(aq)</td>
<td>−167.2</td>
<td>−131.2</td>
<td>56.5</td>
</tr>
<tr>
<td>Cl(_3)F(g)</td>
<td>−163.2</td>
<td>−123.0</td>
<td>281.6</td>
</tr>
</tbody>
</table>

Chromium

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>23.8</td>
</tr>
<tr>
<td>Cr(g)</td>
<td>396.6</td>
<td>351.8</td>
<td>174.5</td>
</tr>
<tr>
<td>CrCl(_3)(s)</td>
<td>−556.5</td>
<td>−486.1</td>
<td>123.0</td>
</tr>
<tr>
<td>CrO(_3)(g)</td>
<td>−292.9</td>
<td>—</td>
<td>266.2</td>
</tr>
<tr>
<td>Cr(_2)O(_3)(s)</td>
<td>−1139.7</td>
<td>−1058.1</td>
<td>81.2</td>
</tr>
</tbody>
</table>

Cobalt

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Co(g)</td>
<td>424.7</td>
<td>380.3</td>
<td>179.5</td>
</tr>
<tr>
<td>CoCl(_2)(s)</td>
<td>−312.5</td>
<td>−269.8</td>
<td>109.2</td>
</tr>
</tbody>
</table>

Copper

<table>
<thead>
<tr>
<th>Substance</th>
<th>Δ(H^\circ) (kJ/mol)</th>
<th>Δ(G^\circ) (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>(\Delta H^\circ) (kJ/mol)</td>
<td>(\Delta G^\circ) (kJ/mol)</td>
<td>(S^\circ) (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Cu(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>33.2</td>
</tr>
<tr>
<td>Cu(g)</td>
<td>337.4</td>
<td>297.7</td>
<td>166.4</td>
</tr>
<tr>
<td>CuCl(s)</td>
<td>-137.2</td>
<td>-119.9</td>
<td>86.2</td>
</tr>
<tr>
<td>CuCl_2(s)</td>
<td>-220.1</td>
<td>-175.7</td>
<td>108.1</td>
</tr>
<tr>
<td>CuO(s)</td>
<td>-157.3</td>
<td>-129.7</td>
<td>42.6</td>
</tr>
<tr>
<td>Cu_2O(s)</td>
<td>-168.6</td>
<td>-146.0</td>
<td>93.1</td>
</tr>
<tr>
<td>CuS(s)</td>
<td>-53.1</td>
<td>-53.6</td>
<td>66.5</td>
</tr>
<tr>
<td>Cu_2S(s)</td>
<td>-79.5</td>
<td>-86.2</td>
<td>120.9</td>
</tr>
<tr>
<td>CuCN(s)</td>
<td>96.2</td>
<td>111.3</td>
<td>84.5</td>
</tr>
</tbody>
</table>

Fluorine

<table>
<thead>
<tr>
<th>Substance</th>
<th>(\Delta H^\circ) (kJ/mol)</th>
<th>(\Delta G^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(g)</td>
<td>79.4</td>
<td>62.3</td>
<td>158.8</td>
</tr>
<tr>
<td>F^-(aq)</td>
<td>-332.6</td>
<td>-278.8</td>
<td>-13.8</td>
</tr>
<tr>
<td>F_2(g)</td>
<td>0.0</td>
<td>0.0</td>
<td>202.8</td>
</tr>
<tr>
<td>HF(g)</td>
<td>-273.3</td>
<td>-275.4</td>
<td>173.8</td>
</tr>
<tr>
<td>HF(aq)</td>
<td>-332.6</td>
<td>-278.8</td>
<td>-13.8</td>
</tr>
</tbody>
</table>

Hydrogen

<table>
<thead>
<tr>
<th>Substance</th>
<th>(\Delta H^\circ) (kJ/mol)</th>
<th>(\Delta G^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(g)</td>
<td>218.0</td>
<td>203.3</td>
<td>114.7</td>
</tr>
<tr>
<td>H_2(g)</td>
<td>0.0</td>
<td>0.0</td>
<td>130.7</td>
</tr>
<tr>
<td>H^+(aq)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Iodine

<table>
<thead>
<tr>
<th>Substance</th>
<th>(\Delta H^\circ) (kJ/mol)</th>
<th>(\Delta G^\circ) (kJ/mol)</th>
<th>(S^\circ) (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(g)</td>
<td>106.8</td>
<td>70.2</td>
<td>180.8</td>
</tr>
<tr>
<td>I^-(aq)</td>
<td>-55.2</td>
<td>-51.6</td>
<td>111.3</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH° (kJ/mol)</td>
<td>ΔG° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>I$_2$(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>116.1</td>
</tr>
<tr>
<td>I$_2$(g)</td>
<td>62.4</td>
<td>19.3</td>
<td>260.7</td>
</tr>
<tr>
<td>HI(g)</td>
<td>26.5</td>
<td>1.7</td>
<td>206.6</td>
</tr>
<tr>
<td>HI(aq)</td>
<td>−55.2</td>
<td>−51.6</td>
<td>111.3</td>
</tr>
</tbody>
</table>

Iron

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔG° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>27.3</td>
</tr>
<tr>
<td>Fe(g)</td>
<td>416.3</td>
<td>370.7</td>
<td>180.5</td>
</tr>
<tr>
<td>Fe$^{2+}$(aq)</td>
<td>−89.1</td>
<td>−78.9</td>
<td>−137.7</td>
</tr>
<tr>
<td>Fe$^{3+}$(aq)</td>
<td>−48.5</td>
<td>−4.7</td>
<td>−315.9</td>
</tr>
<tr>
<td>FeCl$_2$(s)</td>
<td>−341.8</td>
<td>−302.3</td>
<td>118.0</td>
</tr>
<tr>
<td>FeCl$_3$(s)</td>
<td>−399.5</td>
<td>−334.0</td>
<td>142.3</td>
</tr>
<tr>
<td>FeO(s)</td>
<td>−272.0</td>
<td>−251.4</td>
<td>60.7</td>
</tr>
<tr>
<td>Fe$_2$O$_3$(s)</td>
<td>−824.2</td>
<td>−742.2</td>
<td>87.4</td>
</tr>
<tr>
<td>Fe$_3$O$_4$(s)</td>
<td>−1118.4</td>
<td>−1015.4</td>
<td>146.4</td>
</tr>
<tr>
<td>FeS$_2$(s)</td>
<td>−178.2</td>
<td>−166.9</td>
<td>52.9</td>
</tr>
<tr>
<td>FeCO$_3$(s)</td>
<td>−740.6</td>
<td>−666.7</td>
<td>92.9</td>
</tr>
</tbody>
</table>

Lead

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔG° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>64.8</td>
</tr>
<tr>
<td>Pb(g)</td>
<td>195.2</td>
<td>162.2</td>
<td>175.4</td>
</tr>
<tr>
<td>PbO(s, red or litdarge)</td>
<td>−219.0</td>
<td>−188.9</td>
<td>66.5</td>
</tr>
<tr>
<td>PbO(s, yellow or massicot)</td>
<td>−217.3</td>
<td>−187.9</td>
<td>68.7</td>
</tr>
<tr>
<td>PbO$_2$(s)</td>
<td>−277.4</td>
<td>−217.3</td>
<td>68.6</td>
</tr>
<tr>
<td>PbCl$_2$(s)</td>
<td>−359.4</td>
<td>−314.1</td>
<td>136.0</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH_f° (kJ/mol)</td>
<td>ΔG_f° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>PbS(s)</td>
<td>-100.4</td>
<td>-98.7</td>
<td>91.2</td>
</tr>
<tr>
<td>PbSO$_4$(s)</td>
<td>-920.0</td>
<td>-813.0</td>
<td>148.5</td>
</tr>
<tr>
<td>PbCO$_3$(s)</td>
<td>-699.1</td>
<td>-625.5</td>
<td>131.0</td>
</tr>
<tr>
<td>Pb(NO$_3$)$_2$(s)</td>
<td>-451.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pb(NO$_3$)$_2$(aq)</td>
<td>-416.3</td>
<td>-246.9</td>
<td>303.3</td>
</tr>
</tbody>
</table>

Lithium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>29.1</td>
</tr>
<tr>
<td>Li(g)</td>
<td>159.3</td>
<td>126.6</td>
<td>138.8</td>
</tr>
<tr>
<td>Li$^+$ (aq)</td>
<td>-278.5</td>
<td>-293.3</td>
<td>13.4</td>
</tr>
<tr>
<td>LiCl(s)</td>
<td>-408.6</td>
<td>-384.4</td>
<td>59.3</td>
</tr>
<tr>
<td>Li$_2$O(s)</td>
<td>-597.9</td>
<td>-561.2</td>
<td>37.6</td>
</tr>
</tbody>
</table>

Magnesium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>32.7</td>
</tr>
<tr>
<td>Mg(g)</td>
<td>147.1</td>
<td>112.5</td>
<td>148.6</td>
</tr>
<tr>
<td>Mg$^{2+}$(aq)</td>
<td>-466.85</td>
<td>-454.8</td>
<td>-138.1</td>
</tr>
<tr>
<td>MgCl$_2$(s)</td>
<td>-641.3</td>
<td>-591.8</td>
<td>89.6</td>
</tr>
<tr>
<td>MgO(s)</td>
<td>-601.6</td>
<td>-569.3</td>
<td>27.0</td>
</tr>
<tr>
<td>Mg(OH)$_2$(s)</td>
<td>-924.5</td>
<td>-833.5</td>
<td>63.2</td>
</tr>
<tr>
<td>MgSO$_4$(s)</td>
<td>-1284.9</td>
<td>-1170.6</td>
<td>91.6</td>
</tr>
<tr>
<td>MgS(s)</td>
<td>-346.0</td>
<td>-341.8</td>
<td>50.3</td>
</tr>
</tbody>
</table>

Manganese

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Substance</td>
<td>(\Delta H_f^o) (kJ/mol)</td>
<td>(\Delta G_f^o) (kJ/mol)</td>
<td>(S^o) (J/mol K)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Mn(g)</td>
<td>280.7</td>
<td>238.5</td>
<td>173.7</td>
</tr>
<tr>
<td>MnCl(_2)(s)</td>
<td>−481.3</td>
<td>−440.5</td>
<td>118.2</td>
</tr>
<tr>
<td>MnO(s)</td>
<td>−385.2</td>
<td>−362.9</td>
<td>59.7</td>
</tr>
<tr>
<td>MnO(_2)(s)</td>
<td>−520.0</td>
<td>−465.1</td>
<td>53.1</td>
</tr>
<tr>
<td>KMnO(_4)(s)</td>
<td>−837.2</td>
<td>−737.6</td>
<td>171.7</td>
</tr>
<tr>
<td>MnO(_4)^−(aq)</td>
<td>−541.4</td>
<td>−447.2</td>
<td>191.2</td>
</tr>
<tr>
<td>Hg(l)</td>
<td>0.0</td>
<td>0.0</td>
<td>75.9</td>
</tr>
<tr>
<td>Hg(g)</td>
<td>61.4</td>
<td>31.8</td>
<td>175.0</td>
</tr>
<tr>
<td>HgCl(_2)(s)</td>
<td>−224.3</td>
<td>−178.6</td>
<td>146.0</td>
</tr>
<tr>
<td>Hg(_2)Cl(_2)(s)</td>
<td>−265.4</td>
<td>−210.7</td>
<td>191.6</td>
</tr>
<tr>
<td>HgO(s)</td>
<td>−90.8</td>
<td>−58.5</td>
<td>70.3</td>
</tr>
<tr>
<td>HgS(s, red)</td>
<td>−58.2</td>
<td>−50.6</td>
<td>82.4</td>
</tr>
<tr>
<td>Hg(_2)(g)</td>
<td>108.8</td>
<td>68.2</td>
<td>288.1</td>
</tr>
<tr>
<td>Mo(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>28.7</td>
</tr>
<tr>
<td>Mo(g)</td>
<td>658.1</td>
<td>612.5</td>
<td>182.0</td>
</tr>
<tr>
<td>MoO(_2)(s)</td>
<td>−588.9</td>
<td>−533.0</td>
<td>46.3</td>
</tr>
<tr>
<td>MoO(_3)(s)</td>
<td>−745.1</td>
<td>−668.0</td>
<td>77.7</td>
</tr>
<tr>
<td>Ni(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>29.9</td>
</tr>
<tr>
<td>Ni(g)</td>
<td>429.7</td>
<td>384.5</td>
<td>182.2</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH° (kJ/mol)</td>
<td>ΔG° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>NiCl$_2$(s)</td>
<td>−305.3</td>
<td>−259.0</td>
<td>97.7</td>
</tr>
<tr>
<td>Ni(OH)$_2$(s)</td>
<td>−529.7</td>
<td>−447.2</td>
<td>88.0</td>
</tr>
<tr>
<td>N(g)</td>
<td>472.7</td>
<td>455.5</td>
<td>153.3</td>
</tr>
<tr>
<td>N$_2$(g)</td>
<td>0.0</td>
<td>0.0</td>
<td>191.6</td>
</tr>
<tr>
<td>NH$_3$(g)</td>
<td>−45.9</td>
<td>−16.4</td>
<td>192.8</td>
</tr>
<tr>
<td>NH$_4^+$(aq)</td>
<td>−132.5</td>
<td>−79.3</td>
<td>113.4</td>
</tr>
<tr>
<td>N$_2$H$_4$(l)</td>
<td>50.6</td>
<td>149.3</td>
<td>121.2</td>
</tr>
<tr>
<td>N$_2$H$_4$(g)</td>
<td>95.4</td>
<td>159.4</td>
<td>238.5</td>
</tr>
<tr>
<td>NH$_4$Cl(s)</td>
<td>−314.4</td>
<td>−202.9</td>
<td>94.6</td>
</tr>
<tr>
<td>NH$_4$OH(l)</td>
<td>−361.2</td>
<td>−254.0</td>
<td>165.6</td>
</tr>
<tr>
<td>NH$_4$NO$_3$(s)</td>
<td>−365.6</td>
<td>−183.9</td>
<td>151.1</td>
</tr>
<tr>
<td>(NH$_4$)$_2$SO$_4$(s)</td>
<td>−1180.9</td>
<td>−901.7</td>
<td>220.1</td>
</tr>
<tr>
<td>NO(g)</td>
<td>91.3</td>
<td>87.6</td>
<td>210.8</td>
</tr>
<tr>
<td>NO$_2$(g)</td>
<td>33.2</td>
<td>51.3</td>
<td>240.1</td>
</tr>
<tr>
<td>N$_2$O(g)</td>
<td>81.6</td>
<td>103.7</td>
<td>220.0</td>
</tr>
<tr>
<td>N$_2$O$_4$(l)</td>
<td>−19.5</td>
<td>97.5</td>
<td>209.2</td>
</tr>
<tr>
<td>N$_2$O$_4$(g)</td>
<td>11.1</td>
<td>99.8</td>
<td>304.4</td>
</tr>
<tr>
<td>HNO$_2$(g)</td>
<td>−79.5</td>
<td>−46.0</td>
<td>254.1</td>
</tr>
<tr>
<td>HNO$_3$(l)</td>
<td>−174.1</td>
<td>−80.7</td>
<td>155.6</td>
</tr>
<tr>
<td>HNO$_3$(g)</td>
<td>−133.9</td>
<td>−73.5</td>
<td>266.9</td>
</tr>
<tr>
<td>HNO$_3$(aq)</td>
<td>−207.4</td>
<td>−111.3</td>
<td>146.4</td>
</tr>
<tr>
<td>NF$_3$(g)</td>
<td>−132.1</td>
<td>−90.6</td>
<td>260.8</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH_f° (kJ/mol)</td>
<td>ΔG_f° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>OCN(l)</td>
<td>108.9</td>
<td>125.0</td>
<td>112.8</td>
</tr>
<tr>
<td>HCN(g)</td>
<td>135.1</td>
<td>124.7</td>
<td>201.8</td>
</tr>
<tr>
<td>Osmium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>32.6</td>
</tr>
<tr>
<td>Os(g)</td>
<td>791.0</td>
<td>745.0</td>
<td>192.6</td>
</tr>
<tr>
<td>OsO$_4$(s)</td>
<td>-394.1</td>
<td>-304.9</td>
<td>143.9</td>
</tr>
<tr>
<td>OsO$_4$(g)</td>
<td>-337.2</td>
<td>-292.8</td>
<td>293.8</td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(g)</td>
<td>249.2</td>
<td>231.7</td>
<td>161.1</td>
</tr>
<tr>
<td>O$_2$(g)</td>
<td>0.0</td>
<td>0.0</td>
<td>205.2</td>
</tr>
<tr>
<td>O$_3$(g)</td>
<td>142.7</td>
<td>163.2</td>
<td>238.9</td>
</tr>
<tr>
<td>OH$^-$ (aq)</td>
<td>-230.0</td>
<td>-157.2</td>
<td>-10.8</td>
</tr>
<tr>
<td>H$_2$O(l)</td>
<td>-285.8</td>
<td>-237.1</td>
<td>70.0</td>
</tr>
<tr>
<td>H$_2$O(g)</td>
<td>-241.8</td>
<td>-228.6</td>
<td>188.8</td>
</tr>
<tr>
<td>H$_2$O$_2$(l)</td>
<td>-187.8</td>
<td>-120.4</td>
<td>109.6</td>
</tr>
<tr>
<td>H$_2$O$_2$(g)</td>
<td>-136.3</td>
<td>-105.6</td>
<td>232.7</td>
</tr>
<tr>
<td>Phosphorus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(s, white)</td>
<td>0.0</td>
<td>0.0</td>
<td>41.1</td>
</tr>
<tr>
<td>P(s, red)</td>
<td>-17.6</td>
<td>-12.5</td>
<td>22.8</td>
</tr>
<tr>
<td>P(s, black)</td>
<td>-39.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P(g, white)</td>
<td>316.5</td>
<td>280.1</td>
<td>163.2</td>
</tr>
<tr>
<td>P$_2$(g)</td>
<td>144.0</td>
<td>103.5</td>
<td>218.1</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH_f° (kJ/mol)</td>
<td>ΔG_f° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>$P_4(g)$</td>
<td>58.9</td>
<td>24.4</td>
<td>280.0</td>
</tr>
<tr>
<td>$PCl_3(l)$</td>
<td>−319.7</td>
<td>−272.3</td>
<td>217.1</td>
</tr>
<tr>
<td>$PCl_3(g)$</td>
<td>−287.0</td>
<td>−267.8</td>
<td>311.8</td>
</tr>
<tr>
<td>$POCl_3(l)$</td>
<td>−597.1</td>
<td>−520.8</td>
<td>222.5</td>
</tr>
<tr>
<td>$POCl_3(g)$</td>
<td>−558.5</td>
<td>−512.9</td>
<td>325.5</td>
</tr>
<tr>
<td>$PCl_5(g)$</td>
<td>−374.9</td>
<td>−305.0</td>
<td>364.6</td>
</tr>
<tr>
<td>$PH_3(g)$</td>
<td>5.4</td>
<td>13.5</td>
<td>210.2</td>
</tr>
<tr>
<td>$H_3PO_4(s)$</td>
<td>−1284.4</td>
<td>−1124.3</td>
<td>110.5</td>
</tr>
<tr>
<td>$H_3PO_4(l)$</td>
<td>−1271.7</td>
<td>−1123.6</td>
<td>150.8</td>
</tr>
</tbody>
</table>

Potassium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>64.7</td>
</tr>
<tr>
<td>K(g)</td>
<td>89.0</td>
<td>60.5</td>
<td>160.3</td>
</tr>
<tr>
<td>KBr(s)</td>
<td>−393.8</td>
<td>−380.7</td>
<td>95.9</td>
</tr>
<tr>
<td>KCl(s)</td>
<td>−436.5</td>
<td>−408.5</td>
<td>82.6</td>
</tr>
<tr>
<td>KClO(s)</td>
<td>−397.7</td>
<td>−296.3</td>
<td>143.1</td>
</tr>
<tr>
<td>KClO_3(s)</td>
<td>−361.5</td>
<td>−322.1</td>
<td>94.1</td>
</tr>
<tr>
<td>K_2O(s)</td>
<td>−494.1</td>
<td>−425.1</td>
<td>102.1</td>
</tr>
<tr>
<td>K_O_2(s)</td>
<td>−369.8</td>
<td>−306.6</td>
<td>152.1</td>
</tr>
<tr>
<td>KNO_2(s)</td>
<td>−494.6</td>
<td>−394.9</td>
<td>133.1</td>
</tr>
<tr>
<td>KNO_3(s)</td>
<td>−200.2</td>
<td>−178.3</td>
<td>124.3</td>
</tr>
<tr>
<td>KSCN(s)</td>
<td>−1151.0</td>
<td>−1063.5</td>
<td>155.5</td>
</tr>
<tr>
<td>K_2CO_3(s)</td>
<td>−1437.8</td>
<td>−1321.4</td>
<td>175.6</td>
</tr>
</tbody>
</table>

Rubidium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>ΔH_f° (kJ/mol)</td>
<td>ΔG_f° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Rb(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>76.8</td>
</tr>
<tr>
<td>Rb(g)</td>
<td>80.9</td>
<td>53.1</td>
<td>170.1</td>
</tr>
<tr>
<td>RbCl(s)</td>
<td>-435.4</td>
<td>-407.8</td>
<td>95.9</td>
</tr>
</tbody>
</table>

Selenium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se(s, gray)</td>
<td>0.0</td>
<td>0.0</td>
<td>42.4</td>
</tr>
<tr>
<td>Se(g, gray)</td>
<td>227.1</td>
<td>187.0</td>
<td>176.7</td>
</tr>
<tr>
<td>H$_2$Se(g)</td>
<td>29.7</td>
<td>15.9</td>
<td>219.0</td>
</tr>
</tbody>
</table>

Silicon

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>18.8</td>
</tr>
<tr>
<td>Si(g)</td>
<td>450.0</td>
<td>405.5</td>
<td>168.0</td>
</tr>
<tr>
<td>SiCl$_4$(l)</td>
<td>-687.0</td>
<td>-619.8</td>
<td>239.7</td>
</tr>
<tr>
<td>SiCl$_4$(g)</td>
<td>-657.0</td>
<td>-617.0</td>
<td>330.7</td>
</tr>
<tr>
<td>SiH$_4$(g)</td>
<td>34.3</td>
<td>56.9</td>
<td>204.6</td>
</tr>
<tr>
<td>SiC(s, cubic)</td>
<td>-65.3</td>
<td>-62.8</td>
<td>16.6</td>
</tr>
<tr>
<td>SiC(s, hexagonal)</td>
<td>-62.8</td>
<td>-60.2</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Silver

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>42.6</td>
</tr>
<tr>
<td>Ag(g)</td>
<td>284.9</td>
<td>246.0</td>
<td>173.0</td>
</tr>
<tr>
<td>Ag$^+$ (aq)</td>
<td>105.6</td>
<td>77.1</td>
<td>72.7</td>
</tr>
<tr>
<td>AgBr(s)</td>
<td>-100.4</td>
<td>-96.9</td>
<td>107.1</td>
</tr>
<tr>
<td>AgCl(s)</td>
<td>-127.0</td>
<td>-109.8</td>
<td>96.3</td>
</tr>
<tr>
<td>AgNO$_3$(s)</td>
<td>-124.4</td>
<td>-33.4</td>
<td>140.9</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH° (kJ/mol)</td>
<td>ΔG° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Ag$_2$O(s)</td>
<td>−31.1</td>
<td>−11.2</td>
<td>121.3</td>
</tr>
<tr>
<td>Ag$_2$S(s)</td>
<td>−32.6</td>
<td>−40.7</td>
<td>144.0</td>
</tr>
</tbody>
</table>

Sodium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔG° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>51.3</td>
</tr>
<tr>
<td>Na(g)</td>
<td>107.5</td>
<td>77.0</td>
<td>153.7</td>
</tr>
<tr>
<td>Na$^+$ (aq)</td>
<td>−240.1</td>
<td>−261.9</td>
<td>59.0</td>
</tr>
<tr>
<td>NaF(s)</td>
<td>−576.6</td>
<td>−546.3</td>
<td>51.1</td>
</tr>
<tr>
<td>NaF(aq)</td>
<td>−572.8</td>
<td>−540.7</td>
<td>45.2</td>
</tr>
<tr>
<td>NaCl(s)</td>
<td>−411.2</td>
<td>−384.1</td>
<td>72.1</td>
</tr>
<tr>
<td>NaCl(aq)</td>
<td>−407.3</td>
<td>−393.1</td>
<td>115.5</td>
</tr>
<tr>
<td>NaBr(s)</td>
<td>−361.1</td>
<td>−349.0</td>
<td>86.8</td>
</tr>
<tr>
<td>NaBr(g)</td>
<td>−143.1</td>
<td>−177.1</td>
<td>241.2</td>
</tr>
<tr>
<td>NaBr(aq)</td>
<td>−361.7</td>
<td>−365.8</td>
<td>141.4</td>
</tr>
<tr>
<td>NaO$_2$(s)</td>
<td>−260.2</td>
<td>−218.4</td>
<td>115.9</td>
</tr>
<tr>
<td>Na$_2$O(s)</td>
<td>−414.2</td>
<td>−375.5</td>
<td>75.1</td>
</tr>
<tr>
<td>Na$_2$O$_2$(s)</td>
<td>−510.9</td>
<td>−447.7</td>
<td>95.0</td>
</tr>
<tr>
<td>NaCN(s)</td>
<td>−87.5</td>
<td>−76.4</td>
<td>115.6</td>
</tr>
<tr>
<td>NaNO$_3$(aq)</td>
<td>−447.5</td>
<td>−373.2</td>
<td>205.4</td>
</tr>
<tr>
<td>NaNO$_3$(s)</td>
<td>−467.9</td>
<td>−367.0</td>
<td>116.5</td>
</tr>
<tr>
<td>NaN$_3$(s)</td>
<td>21.7</td>
<td>93.8</td>
<td>96.9</td>
</tr>
<tr>
<td>Na$_2$CO$_3$(s)</td>
<td>−1130.7</td>
<td>−1044.4</td>
<td>135.0</td>
</tr>
<tr>
<td>Na$_2$SO$_4$(s)</td>
<td>−1387.1</td>
<td>−1270.2</td>
<td>149.6</td>
</tr>
</tbody>
</table>

Sulfur

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔG° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>ΔH_f° (kJ/mol)</td>
<td>ΔG_f° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>S(s, rhombic)</td>
<td>0.0</td>
<td>0.0</td>
<td>32.1</td>
</tr>
<tr>
<td>S(g, rhombic)</td>
<td>277.2</td>
<td>236.7</td>
<td>167.8</td>
</tr>
<tr>
<td>SO$_2$(g)</td>
<td>−296.8</td>
<td>−300.1</td>
<td>248.2</td>
</tr>
<tr>
<td>SO$_3$(g)</td>
<td>−395.7</td>
<td>−371.1</td>
<td>256.8</td>
</tr>
<tr>
<td>SO$_4^{2-}$(aq)</td>
<td>−909.3</td>
<td>−744.5</td>
<td>20.1</td>
</tr>
<tr>
<td>SOCl$_2$(g)</td>
<td>−212.5</td>
<td>−198.3</td>
<td>309.8</td>
</tr>
<tr>
<td>H$_2$S(g)</td>
<td>−20.6</td>
<td>−33.4</td>
<td>205.8</td>
</tr>
<tr>
<td>H$_2$SO$_4$(aq)</td>
<td>−909.3</td>
<td>−744.5</td>
<td>20.1</td>
</tr>
</tbody>
</table>

Tin

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn(s, white)</td>
<td>0.0</td>
<td>0.0</td>
<td>51.2</td>
</tr>
<tr>
<td>Sn(s, gray)</td>
<td>−2.1</td>
<td>0.1</td>
<td>44.1</td>
</tr>
<tr>
<td>Sn(g, white)</td>
<td>301.2</td>
<td>266.2</td>
<td>168.5</td>
</tr>
<tr>
<td>SnCl$_4$(l)</td>
<td>−511.3</td>
<td>−440.1</td>
<td>258.6</td>
</tr>
<tr>
<td>SnCl$_4$(g)</td>
<td>−471.5</td>
<td>−432.2</td>
<td>365.8</td>
</tr>
<tr>
<td>SnO$_2$(s)</td>
<td>−557.6</td>
<td>−515.8</td>
<td>49.0</td>
</tr>
</tbody>
</table>

Titanium

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>30.7</td>
</tr>
<tr>
<td>Ti(g)</td>
<td>473.0</td>
<td>428.4</td>
<td>180.3</td>
</tr>
<tr>
<td>TiCl$_2$(s)</td>
<td>−513.8</td>
<td>−464.4</td>
<td>87.4</td>
</tr>
<tr>
<td>TiCl$_3$(s)</td>
<td>−720.9</td>
<td>−653.5</td>
<td>139.7</td>
</tr>
<tr>
<td>TiCl$_4$(l)</td>
<td>−804.2</td>
<td>−737.2</td>
<td>252.3</td>
</tr>
<tr>
<td>TiCl$_4$(g)</td>
<td>−763.2</td>
<td>−726.3</td>
<td>353.2</td>
</tr>
<tr>
<td>TiO$_2$(s)</td>
<td>−944.0</td>
<td>−888.8</td>
<td>50.6</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH_f° (kJ/mol)</td>
<td>ΔG_f° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>U(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>50.2</td>
</tr>
<tr>
<td>U(g)</td>
<td>533.0</td>
<td>488.4</td>
<td>199.8</td>
</tr>
<tr>
<td>UO_2(s)</td>
<td>-1085.0</td>
<td>-1031.8</td>
<td>77.0</td>
</tr>
<tr>
<td>UO_2(g)</td>
<td>-465.7</td>
<td>-471.5</td>
<td>274.6</td>
</tr>
<tr>
<td>UF$_4$(s)</td>
<td>-1914.2</td>
<td>-1823.3</td>
<td>151.7</td>
</tr>
<tr>
<td>UF$_4$(g)</td>
<td>-1598.7</td>
<td>-1572.7</td>
<td>368.0</td>
</tr>
<tr>
<td>UF$_6$(s)</td>
<td>-2197.0</td>
<td>-2068.5</td>
<td>227.6</td>
</tr>
<tr>
<td>UF$_6$(g)</td>
<td>-2147.4</td>
<td>-2063.7</td>
<td>377.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>28.9</td>
</tr>
<tr>
<td>V(g)</td>
<td>514.2</td>
<td>754.4</td>
<td>182.3</td>
</tr>
<tr>
<td>VCl_3(s)</td>
<td>-580.7</td>
<td>-511.2</td>
<td>131.0</td>
</tr>
<tr>
<td>VCl_4(l)</td>
<td>-569.4</td>
<td>-503.7</td>
<td>255.0</td>
</tr>
<tr>
<td>VCl_4(g)</td>
<td>-525.5</td>
<td>-492.0</td>
<td>362.4</td>
</tr>
<tr>
<td>V$_2$O$_5$(s)</td>
<td>-1550.6</td>
<td>-1419.5</td>
<td>131.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° (kJ/mol)</th>
<th>ΔG_f° (kJ/mol)</th>
<th>S° (J/mol K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>41.6</td>
</tr>
<tr>
<td>Zn(g)</td>
<td>130.4</td>
<td>94.8</td>
<td>161.0</td>
</tr>
<tr>
<td>ZnCl$_2$(s)</td>
<td>-415.1</td>
<td>-369.4</td>
<td>111.5</td>
</tr>
<tr>
<td>Zn(NO$_3$)$_2$(s)</td>
<td>-483.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ZnS(s, sphalerite)</td>
<td>-206.0</td>
<td>-201.3</td>
<td>57.7</td>
</tr>
<tr>
<td>Substance</td>
<td>ΔH° (kJ/mol)</td>
<td>ΔG° (kJ/mol)</td>
<td>S° (J/mol K)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Zr(s)</td>
<td>0.0</td>
<td>0.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Zr(g)</td>
<td>608.8</td>
<td>566.5</td>
<td>181.4</td>
</tr>
<tr>
<td>ZrCl$_2$(s)</td>
<td>-502.0</td>
<td>-386</td>
<td>110</td>
</tr>
<tr>
<td>ZrCl$_4$(s)</td>
<td>-980.5</td>
<td>-889.9</td>
<td>181.6</td>
</tr>
</tbody>
</table>

$\text{ZnSO}_4(s)$: \(-982.8\) \hspace{1cm} \(-871.5\) \hspace{1cm} 110.5