An Physical Chemistry Librettexts Textmap organized around the textbook

Physical Chemistry: A Molecular Approach

by Donald A. McQuarrie and John D. Simon

Chapter 1

1. Chapter 1: The Dawn of the Quantum Theory
 2. 1.1: Blackbody Radiation cannot Be Explained Classically
 3. 1.2: Quantum Hypothesis used for Blackbody Radiation Law
 4. 1.3: Photoelectric Effect Explained with Quantum Hypothesis
 5. 1.4: The Hydrogen Atomic Spectrum
 6. 1.5: The Rydberg Formula and the Hydrogen Atomic Spectrum
 7. 1.6: Matter Has Wavelike Properties
 8. 1.7: de Broglie Waves can be Experimentally Observed
 9. 1.8: The Bohr Theory of the Hydrogen Atom
 10. 1.9: The Heisenberg Uncertainty Principle
 11. 1.E: The Dawn of the Quantum Theory (Exercises)

• Chapter 2

1. Chapter 2: The Classical Wave Equation
 2. 2.1: The One-Dimensional Wave Equation
 3. 2.2: The Method of Separation of Variables
 4. 2.3: Oscillatory Solutions to Differential Equations
 5. 2.4: The General Solution is a Superposition of Normal Modes
 6. 2.5: A Vibrating Membrane
 7. 2.E: The Classical Wave Equation (Exercises)

• Chapter 3

1. Chapter 3: The Schrödinger Equation and a Particle in a Box
 2. 3.1: The Schrödinger Equation
 3. 3.2: Linear Operators in Quantum Mechanics
 4. 3.3: The Schrödinger Equation is an Eigenvalue Problem
 5. 3.4: Wavefunctions Have a Probabilistic Interpretation
 6. 3.5: The Energy of a Particle in a Box is Quantized
 7. 3.6: Wave Functions Must Be Normalized
 8. 3.7: The Average Momentum of a Particle in a Box is Zero
 9. 3.8: The Uncertainty Principle
 10. 3.9: A Particle in a Three-Dimensional Box
 11. 3.E: The Schrödinger Equation and a Particle in a Box (Exercises)

• Chapter 4

1. Chapter 4: Postulates and Principles of Quantum Mechanics
2. The Wavefunction Specifies the State of a System
3. Quantum Operators Represent Classical Variables
4. Observable Quantities Must Be Eigenvalues of Quantum Mechanical Operators
5. The Time-Dependent Schrödinger Equation
6. The Eigenfunctions of Operators are Orthogonal
7. Commuting Operators Allow Infinite Precision
8. Postulates and Principles of Quantum Mechanics (Exercises)

Chapter 5
1. The Harmonic Oscillator and the Rigid Rotor
2. A Harmonic Oscillator Obeys Hooke's Law
3. The Equation for a Harmonic-Oscillator Model of a Diatomic Molecule Contains the Reduced Mass of the Molecule
4. The Harmonic Oscillator is an Approximation
5. The Harmonic Oscillator Energy Levels
6. The Harmonic Oscillator and Infrared Spectra
7. The Harmonic-Oscillator Wavefunctions Involve Hermite Polynomials
8. Hermite Polynomials are either Even or Odd Functions
9. The Energy Levels of a Rigid Rotor
10. The Rigid Rotator is a Model for a Rotating Diatomic Molecule
11. The Harmonic Oscillator and the Rigid Rotor (Exercises)

Chapter 6
1. The Schrödinger Equation for the Hydrogen Atom Can Be Solved Exactly
2. The Wavefunctions of a Rigid Rotator are Called Spherical Harmonics
3. The Three Components of Angular Momentum Cannot be Measured Simultaneously with Arbitrary Precision
4. Hydrogen Atomic Orbitals Depend upon Three Quantum Numbers
5. s Orbitals are Spherically Symmetric
6. Orbital Angular Momentum and the p-orbitals
7. The Helium Atom Cannot Be Solved Exactly
8. The Hydrogen Atom (Exercises)

Chapter 7
1. Approximation Methods
2. The Variational Method
3. Five Trial Functions applied to the Helium Atom
4. Linear Variational Method and the Secular Determinant
5. Trial Functions Can Be Linear Combinations of Functions That Also Contain Variational Parameters
6. Perturbation Theory Expresses the Solutions in Terms of Solved Problems
7. Approximation Methods (Exercises)
• Chapter 8
 1. Chapter 8: Multielectron Atoms
 2. 8.1: Atomic and Molecular Calculations are Expressed in Atomic Units
 3. 8.2: Pertubation Theory and the Variational Method for Helium
 4. 8.3: Hartree-Fock Equations are Solved by the Self-Consistent Field Method
 5. 8.4: An Electron Has An Intrinsic Spin Angular Momentum
 6. 8.5: Wavefunctions must be Antisymmetric to Interchange of any Two Electrons
 7. 8.6: Antisymmetric Wave Functions can be Represented by Slater Determinants
 8. 8.7: Hartree-Fock Calculations Give Good Agreement with Experimental Data
 9. 8.8: A Term Symbol Gives a Detailed Description of an Electron Configuration
 10. 8.9: The Allowed Values of J - the Total Angular Momentum Quantum Number
 11. 8.10: Hund's Rules Determine the Term Symbols of the Ground Electronic States
 12. 8.11: Using Atomic Term Symbols to Describe Atomic Spectra
 13. 8.E: Multielectron Atoms (Exercises)
• Chapter 9
 1. Chapter 9: The Chemical Bond: Diatomic Molecules
 2. 9.1: The Born-Oppenheimer Approximation Simplifies the Schrödinger Equation for Molecules
 3. 9.2: The H+2H2+ Prototypical Species
 4. 9.3: The Overlap Integral
 5. 9.4: Chemical Bond Stability
 6. 9.5: Bonding and Antibonding Orbitals
 7. 9.6: A Simple Molecular-Orbital Treatment of H2H2 Places Both Electrons in a Bonding Orbital
 8. 9.7: Molecular Orbitals Can Be Ordered According to Their Energies
 9. 9.8: Molecular-Orbital Theory Does not Predict a Stable Diatomic Helium Molecule
 10. 9.9: Electrons Populate Molecular Orbitals According to the Pauli Exclusion Principle
 11. 9.10: Molecular Orbital Theory Predicts that Molecular Oxygen is Paramagnetic
 12. 9.11: Photoelectron Spectra Support the Existence of Molecular Orbitals
 13. 9.12: Molecular-Orbital Theory Also Applies to Heteronuclear Diatomic Molecules
 14. 9.13: An SCF-LCAO-MO Wave Function Is a Molecular Orbital Formed from a Linear Combination of Atomic Orbitals and Whose Coefficients Are Determined Self-Consistently
 15. 9.14: Molecular Term Symbols Describe Electronic States of Molecules
 16. 9.15: Molecular Term Symbols Designate Symmetry
 17. 9.16: Most Molecules Have Excited Electronic States
 18. 9.E: The Chemical Bond: Diatomic Molecules (Exercises)
• Chapter 10
 1. Chapter 10: Bonding in Polyatomic Molecules
 2. 10.1: Hybrid Orbitals Account for Molecular Shape
 3. 10.2: Hybrid Orbitals in Water
4. 10.3: Why is BeH2BeH2 Linear and H2OH2O Bent?
5. 10.4: Photoelectron Spectroscopy
6. 10.5: The ππ-Electron Approximation of Conjugation
7. 10.6: Butadiene is Stabilized by a Delocalization Energy
8. 10.7: Benzene and Aromaticity
9. 10.E: Bonding in Polyatomic Molecules (Exercises)
 • Chapter 11
1. Chapter 11: Computational Quantum Chemistry
 2. 11.1: Gaussian Basis Sets
 3. 11.2: Extended Basis Sets
4. 11.3: Orbital Polarization Terms in Basis Sets
5. 11.4: The Ground-State Energy of H2H2
6. 11.5: Quantum Calculations
7. 11.E: Computational Quantum Chemistry (Exercises)

Chapter 12
1. Chapter 12: Group Theory: The Exploitation of Symmetry
 2. 12.1: The Exploitation of Symmetry
 3. 12.2: Symmetry Elements
4. 12.3: Symmetry Operations Define Groups
5. 12.4: Symmetry Operations as Matrices
6. 12.5: The C3VC3V Point Group
7. 12.6: Character Tables
8. 12.7: Characters of Irreducible Representations
9. 12.8: Using Symmetry to Solve Secular Determinants
10. 12.9: Generating Operators
11. 12.E: Group Theory: The Exploitation of Symmetry (Exercises)
 • Chapter 13
1. Chapter 13: Molecular Spectroscopy
 2. 13.1: The Electromagnetic Spectrum
3. 13.2: Rotations Accompany Vibrational Transitions
4. 13.3: Unequal Spacings in Vibration-Rotation Spectra
5. 13.4: Unequal Spacings in Pure Rotational Spectra
6. 13.5: Vibrational Overtones
7. 13.6: Electronic Spectra Contain Electronic, Vibrational, and Rotational Information
8. 13.7: The Franck-Condon Principle
9. 13.8: Rotational Spectra of Polyatomic Molecules
10. 13.9: Normal Modes in Polyatomic Molecules
11. 13.10: Irreducible Representation of Point Groups
Chapter 13

13.11: Time-Dependent Perturbation Theory
13.12: The Selection Rule for the Rigid Rotator
13.13: The Harmonic Oscillator Selection Rule
13.14: Group Theory Determines Infrared Activity
13.E: Molecular Spectroscopy (Exercises)

Chapter 14

14.1: Nuclei Have Intrinsic Spin Angular Momenta
14.2: Magnetic Moments Interact with Magnetic Fields
14.3: Proton NMR Spectrometers Operate at Frequencies Between 60 MHz and 750 MHz
14.4: The Magnetic Field Acting upon Nuclei in Molecules Is Shielded
14.5: Chemical Shifts Depend upon the Chemical Environment of the Nucleus
14.6: Spin-Spin Coupling Can Lead to Multiplets in NMR Spectra
14.7: Spin-Spin Coupling Between Chemically Equivalent Protons Is Not Observed
14.8: The n+1 Rule Applies Only to First-Order Spectra
14.9: Second-Order Spectra Can Be Calculated Exactly Using the Variational Method
14.E: Nuclear Magnetic Resonance Spectroscopy (Exercises)

Chapter 15

15.1: Electronically Excited Molecules can Relax by a Number of Processes
15.2: The Dynamics of Transitions can be Modeled by Rate Equations
15.3: A Two-Level System Cannot Achieve a Population Inversion
15.4: Population Inversion can be Achieved in a Three-Level System
15.5: What is Inside a Laser?
15.6: The Helium-Neon Laser
15.7: High-Resolution Laser Spectroscopy
15.8: Pulsed Lasers Can by Used to Measure the Dynamics of Photochemical Processes
15.E: Lasers, Laser Spectroscopy, and Photochemistry (Exercises)

Chapter 16

16.1: All Dilute Gases Behave Ideally
16.2: van der Waals and Redlich-Kwong Equations
16.3: A Cubic Equation of State
16.4: The Law of Corresponding States
16.5: The Second Virial Coefficient
16.6: The Repulsive Term in the Lennard-Jones Potential
16.7: Van der Waals Constants in Terms of Molecular Parameters
16.E: The Properties of Gases (Exercises)
• Chapter 17

1. Chapter 17: Boltzmann Factor and Partition Functions
 2. 17.1: The Boltzmann Factor
 3. 17.2: The Thermal Boltzmann Distribution
 4. 17.3: The Average Ensemble Energy
 5. 17.4: Heat Capacity at Constant Volume
 6. 17.5: Pressure in Terms of Partition Functions
 7. 17.6: Partition Functions of Distinguishable Molecules
 8. 17.7: Partition Functions of Indistinguishable Molecules
 9. 17.8: Partition Functions can be Decomposed
 10. 17.E: Boltzmann Factor and Partition Functions (Exercises)

• Chapter 18

1. 18: Partition Functions and Ideal Gases
 2. 18.1: Translational Partition Functions of Monotonic Gases
 3. 18.2: Most Atoms are in the Ground Electronic State
 4. 18.3: The Energy of a Diatomic Molecule Can Be Approximated as a Sum of Separate Terms
 5. 18.4: Most Molecules are in the Ground Vibrational State
 6. 18.5: Most Molecules are Rotationally Excited at Ordinary Temperatures
 7. 18.6: Rotational Partition Functions of Diatomic Gases
 8. 18.7: Vibrational Partition Functions of Polyatomic Molecules
 9. 18.8: Rotational Partition Functions of Polyatomic Molecules
 10. 18.9: Molar Heat Capacities
 11. 18.E: Partition Functions and Ideal Gases (Exercises)
 12. Ortho and Para Hydrogen
 13. The Equipartition Principle

• Chapter 19

1. 19: The First Law of Thermodynamics
 2. 19.0: Overview of Classical Thermodynamics
 3. 19.1: Pressure-Volume Work
 4. 19.2: Work and Heat are not State Functions, but Energy is a State Function
 5. 19.3: Energy is a State Function
 6. 19.4: An Adiabatic Process is a Process in which No Energy as Heat is Transferred
 7. 19.5: The Temperature of a Gas Decreases in a Reversible Adiabatic Expansion
 8. 19.6: Work and Heat Have a Simple Molecular Interpretation
 9. 19.7: Pressure-Volume Work
 10. 19.8: Heat Capacity is a Path Function
 11. 19.9: Relative Enthalpies Can Be Determined from Heat Capacity Data and Heats of Transition
 12. 19.10: Enthalpy Changes for Chemical Equations are Additive
13. **19.11: Heats of Reactions Can Be Calculated from Tabulated Heats of Formation**

14. **19.12: The Temperature Dependence of ΔH**

 - Chapter 20

1. **20: Entropy and The Second Law of Thermodynamics**
2. **20.1: Energy Does not Determine Spontaneity**

3. **20.2: Nonequilibrium Isolated Systems Evolve in a Direction That Increases Their Probability**

4. **20.3: Unlike heat, Entropy Is a State Function**
5. **20.4: The Second Law of Thermodynamics**

6. **20.5: The Famous Equation of Statistical Thermodynamics**

7. **20.6: We Must Always Devise a Reversible Process to Calculate Entropy Changes**

8. **20.7: Thermodynamics Provides Insight into the Conversion of Heat into Work**

9. **20.8: Entropy Can Be Expressed in Terms of a Partition Function**

10. **20.9: The Molecular Formula S = kB in W is Analogous to the Thermodynamic Formula dS = deltaqrev**

 - Chapter 21

1. **21: Entropy & the Third Law of Thermodynamics**

2. **21.1: Entropy Increases With Increasing Temperature**

3. **21.2: Absolute Entropy**

4. **21.3: Temperatures at a Phase Transition**

5. **21.4: The Third Law of Thermodynamics**

6. **21.5: Practical Absolute Entropies Can Be Determined Calorimetrically**

7. **21.6: Practical Absolute Entropies of Gases Can Be Calculated from Partition Functions**

8. **21.7: Standard Entropies Depend Upon Molecular Mass and Structure**

9. **21.8: Spectroscopic Entropies sometimes disagree with Calorimetric Entropies**

10. **21.9: Standard Entropies Can Be Used to Calculate Entropy Changes of Chemical Reactions**

 - Chapter 22

1. **22: Helmholtz and Gibbs Energies**

2. **22.1: Helmholtz Energy**

3. **22.2: Gibbs Energy**

4. **22.3: The Maxwell Relations**

5. **22.4: The Enthalpy of an Ideal Gas**

6. **22.5: Thermodynamic Functions have Natural Variables**

7. **22.6: The Standard State for a Gas is Ideal Gas**

8. **22.7: The Gibbs-Helmholtz Equation**

9. **22.8: Fugacity Measures Nonideality of a Gas**

10. **Homework Problems**
Chapter 23

1. 23: Phase Equilibria
 2. 23.1: A Phase Diagram Summarizes the Solid-Liquid-Gas Behavior of a Substance
 3. 23.2: Gibbs Energies and Phase Diagrams
 4. 23.3: The Chemical Potentials of a Pure Substance in Two Phases in Equilibrium
 5. 23.4: The Clausius-Clapeyron Equation
 6. 23.5: Chemical Potential Can be Evaluated From a Partition Function
 7. Homework Problems
 • Chapter 24
 1. 24: Solutions I: Liquid-Liquid Solutions
 2. 24.1: Partial Molar Quantities in Solutions
 3. 24.2: The Gibbs-Duhem Equation
 4. 24.3: Chemical Potential of Each Component Has the Same Value in Each Phase in Which the Component Appears
 5. 24.4: Ideal Solutions obey Raoult’s Law
 6. 24.5: Most Solutions are Not Ideal
 7. 24.6: Vapor Pressures of Volatile Binary Solutions
 8. 24.7: Activities of Nonideal Solutions
 9. 24.8: Activities are Calculated with Respect to Standard States
 10. 24.9: Gibbs Energy of Mixing of Binary Solutions in Terms of the Activity Coefficient
 11. 24.E: Solutions I: Liquid-Liquid Solutions (Exercises)
 • Chapter 25
 1. 25. Solutions II: Solid-Liquid Solutions
 2. 25.1: Raoult’s and Henry’s Laws Define Standard States
 3. 25.2: The Activities of Nonvolatile Solutes
 4. 25.3: Colligative Properties Depend only on Number Density
 5. 25.4: Osmotic Pressure can Determine Molecular Masses
 6. 25.5: Electrolytes Solutions are Nonideal at Low Concentrations
 7. 25.6: The Debye-Hückel Theory
 8. 25.7: Extending Debye-Hückel Theory to Higher Concentrations
 9. Homework Problems
 • Chapter 25
 • Chapter 26
 1. 26: Chemical Equilibrium
 2. 26.1: Equilibrium Results when Gibbs Energy is Minimized
 3. 26.2: An Equilibrium Constant Is a Function of Temperature Only
 4. 26.3: Standard Gibbs Energies of Formation Can Be Used to Calculate Equilibrium Constants
 5. 26.4: A Plot of the Gibbs Energy of a Reaction Mixture Against the Extent of Reaction Is a Minimum at Equilibrium
 6. 26.5: Reaction Quotient and Equilibrium Constant Ratio Determines Reaction Direction
7. **26.6: The Sign of ΔG and not ΔG° Determines the Direction of Reaction Spontaneity**

8. **26.7: The Van't Hoff Equation**

9. **26.8: Equilibrium Constants in Terms of Partition Functions**

10. **26.9: Molecular Partition Functions and Related Thermodynamic Data Are Extensively Tabulated**

11. **26.10: Real Gases Are Expressed in Terms of Partial Fugacities**

12. **26.11: Thermodynamic Equilibrium Constants Are Expressed in Terms of Activities**

13. **26.12: Activities are Important for Ionic Species**

14. **Homework Problems**

 • **Chapter 27**

1. **27: The Kinetic Theory of Gases**

2. **27.1: The Average Translational Kinetic Energy of a Gas**

3. **27.2: The Distribution of the Components of Molecular Speeds are Described by a Gaussian Distribution**

4. **27.3: The Distribution of Molecular Speeds Is Given by the Maxwell-Boltzmann Distribution**

5. **27.4: The Frequency of Collisions**

6. **27.5: The Maxwell-Boltzmann Distribution Has Been Verified Experimentally**

7. **27.6: The Mean Free Path**

8. **27.7: The Rate of a Gas-Phase Chemical Reactions**

9. **27.E: The Kinetic Theory of Gases (Exercises)**

 • **Chapter 28**

1. **28: Chemical Kinetics I - Rate Laws**

2. **28.1: The Time Dependence of a Chemical Reaction Is Described by a Rate Law**

3. **28.2: Rate Laws Must Be Determined Experimentally**

4. **28.3: First-Order Reactions Show an Exponential Decay of Reactant Concentration with Time**

5. **28.4: Different Rate Laws Predict Different Kinetics**

6. **28.5: Reactions Can Also Be Reversible**

7. **28.6: The Rate Constants of a Reversible Reaction Can Be Determined Using Relaxation Techniques**

8. **28.7: Rate Constants Are Usually Strongly Temperature Dependent**

9. **28.8: Transition-State Theory Can Be Used to Estimate Reaction Rate Constants**

 • **Chapter 29**

1. **29: Chemical Kinetics II: Reaction Mechanisms**

2. **29.1: A Mechanism is a Sequence of Elementary Reactions**

3. **29.2: The Principle of Detailed Balance**

4. **29.3: Multiple Mechanisms are Often Indistinguishable**

5. **29.4: The Steady-State Approximation**

6. **29.5: Rate Laws Do Not Imply Unique Mechanism**

7. **29.6: The Lindemann Mechanism**

8. **29.7: Some Reaction Mechanisms Involve Chain Reactions**
9. 29.8: A Catalyst Affects the Mechanism and Activation Energy
10. 29.9: The Michaelis-Menten Mechanism for Enzyme Catalysis
11. 29.E: Chemical Kinetics II: Reaction Mechanisms (Exercises)
 • Chapter 30
 1. 30: Gas-Phase Reaction Dynamics

2. 30.1: The Rate of Bimolecular Gas-Phase Reaction Can Be Calculated Using Hard-Sphere Collision Theory and an Energy-Dependent Reaction Cross Section
3. 30.2: A Reaction Cross Section Depends Upon the Impact Parameter
4. 30.3: The Rate Constant for a Gas-Phase Chemical Reaction May Depend on the Orientations of the Colliding Molecules
5. 30.4: The Internal Energy of the Reactants Can Affect the Cross Section of a Reaction
6. 30.5: A Reactive Collision Can Be Described in a Center-of-Mass Coordinate System
7. 30.6: Reactive Collisions Can Be Studied Using Crossed Molecular Beam Machines
8. 30.7: Reactions Can Produce Vibrationally Excited Molecules
9. 30.8: The Velocity and Angular Distribution of the Products of a Reactive Collision Provide a Molecular Picture of the Chemical Reaction
10. 30.9: Not All Gas-Phase Chemical Reactions Are Rebound Reactions
11. 30.10: The Potential-Energy Surface Can Be Calculated Using Quantum Mechanics
12. 30.E: Gas-Phase Reaction Dynamics (Exercises)
 • Chapter 33
 1. 31: Solids and Surface Chemistry

2. 31.1: The Unit Cell Is the Fundamental Building Block of a Crystal
3. 31.2: The Orientation of a Lattice Plane Is Described by its Miller Indices
4. 31.3: The Spacing Between Lattice Planes Can Be Determined from X-Ray Diffraction Measurements
5. 31.4: The Total Scattering Intensity Is Related to the Periodic Structure of the Electron Density in the Crystal
6. 31.5: The Structure Factor and the Electron Density Are Related by a Fourier Transform
7. 31.6: A Gas Molecule Can Physisorb or Chemisorb to a Solid Surface
8. 31.7: Isotherms Are Plots of Surface Coverage as a Function of Gas Pressure at Constant Temperature
9. 31.8: The Langmuir Isotherm Can Be Used to Derive Rate Laws for Surface-Catalyzed Gas-Phase Reactions
10. 31.9: The Structure of a Surface Is Different from that of a Bulk Solid
11. 31.10: The Reaction Between H2(g) and N2(g) to Make NH3 (g) Can Be Surface Catalyzed
12. 31.E: Homework Problems
 • Appendices
 1. MathChapters
 2. A: Complex Numbers
 3. B: Probability and Statistics
 4. C: Vectors
 5. D: Spherical Coordinates
 6. E: Determinants
7. **F: Matrices**
8. **G: Numerical Methods**
9. **H: Partial Differentiation**
10. **I: Series and Limits**
11. **J: The Binomial Distribution and Stirling's Approximation**

- 1: The Dawn of the Quantum Theory
- 2: The Classical Wave Equation
- 3: The Schrödinger Equation and a Particle in a Box
- 4: Postulates and Principles of Quantum Mechanics
5: The Harmonic Oscillator and the Rigid Rotor

\[R = \text{bond length} \]

\[m_1 - C - m_2 \]

\[r_1 - C - r_2 \]

6: The Hydrogen Atom

\[E_{n}^{(1)} = \langle \phi_n | H_1 | \phi_n \rangle \]

\[c_{nk}^{(1)} = \frac{\langle \phi_k | H_1 | \phi_n \rangle}{E_n^{(0)} - E_k^{(0)}} \]

\[E_{n}^{(2)} = \sum_{k \neq n} \frac{|\langle \phi_k | H_1 | \phi_n \rangle|^2}{E_n^{(0)} - E_k^{(0)}} \]

7: Approximation Methods

8: Multielectron Atoms
9: The Chemical Bond: Diatomic Molecules

10: Bonding in Polyatomic Molecules

11: Computational Quantum Chemistry

12: Group Theory: The Exploitation of Symmetry
13: Molecular Spectroscopy

14: Nuclear Magnetic Resonance Spectroscopy

15: Lasers, Laser Spectroscopy, and Photochemistry

16: The Properties of Gases
17: Boltzmann Factor and Partition Functions

\[Z = \sum_i e^{-\beta E_i} \]

- 18: Partition Functions and Ideal Gases

- 19: The First Law of Thermodynamics

- 20: Entropy and The Second Law of Thermodynamics
21: Entropy & the Third Law of Thermodynamics

22: Helmholtz and Gibbs Energies

23: Phase Equilibria

24: Solutions I: Liquid-Liquid Solutions
25. Solutions II - Solid-Liquid Solutions

26: Chemical Equilibrium

27: The Kinetic Theory of Gases

28: Chemical Kinetics I - Rate Laws
$e^{i\pi} + 1 = 0$