2. **4.1: Experiencing Atoms at Tiburon**
3. **4.2: Indivisible: The Atomic Theory**
4. **4.3: The Nuclear Atom**
5. **4.4: The Properties of Protons, Neutrons, and Electrons**
6. **4.5: Elements: Defined by Their Numbers of Protons**
7. **4.6: Looking for Patterns: The Periodic Law and the Periodic Table**
8. **4.7: Ions: Losing and Gaining Electrons**
9. **4.8: Isotopes: When the Number of Neutrons Varies**
10. **4.9: Atomic Mass: The Average Mass of an Element’s Atoms**
 • Chapter 5
 1. **Chapter 5: Molecules and Compounds**
 2. **5.1: Sugar and Salt**
 3. **5.2: Compounds Display Constant Composition**
 4. **5.3: Chemical Formulas: How to Represent Compounds**
 5. **5.4: A Molecular View of Elements and Compounds**
 6. **5.5: Writing Formulas for Ionic Compounds**
 7. **5.6: Nomenclature: Naming Compounds**
 8. **5.7: Naming Ionic Compounds**
 9. **5.8: Naming Molecular Compounds**
 10. **5.9: Naming Acids**
 11. **5.10: Nomenclature Summary**
 12. **5.11: Formula Mass: The Mass of a Molecule or Formula Unit**
 • Chapter 6
 1. **Chapter 6: Chemical Composition**
 2. **6.1: How Much Sodium?**
 3. **6.2: Counting Nails by the Pound**
 4. **6.3: Counting Atoms by the Gram**
 5. **6.4: Counting Molecules by the Gram**
 6. **6.5: Chemical Formulas as Conversion Factors**
 7. **6.6: Mass Percent Composition of Compounds**
 8. **6.7: Mass Percent Composition from a Chemical Formula**
 9. **6.8: Calculating Empirical Formulas for Compounds**
 10. **6.9: Calculating Molecular Formulas for Compounds**
 • Chapter 7
 1. **Chapter 7: Chemical Reactions**
 2. **7.1: Grade School Volcanoes, Automobiles, and Laundry Detergents**
 3. **7.2: Evidence of a Chemical Reaction**
 4. **7.3: The Chemical Equation**
• Chapter 11
 1. Chapter 11: Gases
 2. 11.1: Extra-Long Straws
 3. 11.2: Kinetic Molecular Theory: A Model for Gases
 4. 11.3: Pressure: The Result of Constant Molecular Collisions
 5. 11.4: Boyle’s Law: Pressure and Volume
 6. 11.5: Charles’s Law: Volume and Temperature
 7. 11.6: Gay-Lussac’s Law: Temperature and Pressure
 8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
 9. 11.8: Avogadro’s Law: Volume and Moles
 10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
 11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
 12. 11.11: Gases in Chemical Reactions

• Chapter 12
 1. Chapter 12: Liquids, Solids, and Intermolecular Forces
 2. 12.1: Interactions between Molecules
 3. 12.2: Properties of Liquids and Solids
 4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
 5. 12.4: Evaporation and Condensation
 6. 12.5: Melting, Freezing, and Sublimation
 7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
 8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
 9. 12.8: Water: A Remarkable Molecule

• Chapter 13
 1. Chapter 13: Solutions
 2. 13.1: Prelude - Tragedy in Cameroon
 3. 13.2: Solutions: Homogeneous Mixtures
 4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
 5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
 6. 13.5: Solution Concentration: Mass Percent
 7. 13.6: Solution Concentration: Molarity
 8. 13.7: Solution Dilution
 9. 13.8: Solution Stoichiometry
 10. 13.9: Freezing Point Depression and Boiling Point Elevation: Making Water Freeze Colder and Boil Hotter
 11. 13.10: Osmosis: Why Drinking Salt Water Causes Dehydration

• Chapter 14
 1. Chapter 14: Acids and Bases
 2. 14.1: Sour Patch Kids and International Spy Movies
3. 14.2: Acids: Properties and Examples
4. 14.3: Bases: Properties and Examples
5. 14.4: Molecular Definitions of Acids and Bases
6. 14.5: Reactions of Acids and Bases
7. 14.6: Acid–Base Titration: A Way to Quantify the Amount of Acid or Base in a Solution
8. 14.7: Strong and Weak Acids and Bases
9. 14.8: Water: Acid and Base in One
10. 14.9: The pH and pOH Scales: Ways to Express Acidity and Basicity

Learning Objectives

• State the octet rule.
• Define ionic bond.
• Draw Lewis structures for ionic compounds.

In Section 4.7 we saw how ions are formed by losing electrons to make cations or by gaining electrons to form anions. The astute reader may have noticed something: Many of the ions that form have eight electrons in their valence shell. Either atoms gain enough electrons to have eight electrons in the valence shell and become the appropriately charged anion, or they lose the electrons in their original valence shell; the lower shell, now the valence shell, has eight electrons in it, so the atom becomes positively charged. For whatever reason, having eight electrons in a valence shell is a particularly energetically stable arrangement of electrons. The trend that atoms like to have eight electrons in their valence shell is called the octet rule. When atoms form compounds, the octet rule is not always satisfied for all atoms at all times, but it is a very good rule of thumb for understanding the kinds of bonding arrangements that atoms can make.

It is not impossible to violate the octet rule. Consider sodium: in its elemental form, it has one valence electron and is stable. It is rather reactive, however, and does not require a lot of energy to remove that electron to make the Na⁺ ion. We could remove another electron by adding even more energy to the ion, to make the Na²⁺ ion. However, that requires much more energy than is normally available in chemical reactions, so sodium stops at a 1+ charge after losing a single electron. It turns out that the Na⁺ ion has a complete octet in its new valence shell, the n = 2 shell, which satisfies the octet rule. The octet rule is a result of trends in energies and is useful in explaining why atoms form the ions that they do.

Now consider an Na atom in the presence of a Cl atom. The two atoms have these Lewis electron dot diagrams and electron configurations:

\[
\text{Na} [\text{Ne}] 3s^1 3p^1 \quad \text{Cl} [\text{Ne}] 3s^2 3p^5
\]

For the Na atom to obtain an octet, it must lose an electron; for the Cl atom to gain an octet, it must gain an electron. An electron transfers from the Na atom to the Cl atom:
resulting in two ions—the Na$^+$ ion and the Cl$^-$ ion:

\[
\text{Na}^+ \text{Cl}^- \rightarrow NaCl
\]

Both species now have complete octets, and the electron shells are energetically stable. From basic physics, we know that opposite charges attract. This is what happens to the Na$^+$ and Cl$^-$ ions:

where we have written the final formula (the formula for sodium chloride) as per the convention for ionic compounds, without listing the charges explicitly. The attraction between oppositely charged ions is called an ionic bond, and it is one of the main types of chemical bonds in chemistry. Ionic bonds are caused by electrons transferring from one atom to another.

In electron transfer, the number of electrons lost must equal the number of electrons gained. We saw this in the formation of NaCl. A similar process occurs between Mg atoms and O atoms, except in this case two electrons are transferred:

The two ions each have octets as their valence shell, and the two oppositely charged particles attract, making an ionic bond:

Remember, in the final formula for the ionic compound, we do not write the charges on the ions.

What about when an Na atom interacts with an O atom? The O atom needs two electrons to complete its valence octet, but the Na atom supplies only one electron:

The O atom still does not have an octet of electrons. What we need is a second Na atom to donate a second electron to the O atom:
These three ions attract each other to give an overall neutral-charged ionic compound, which we write as Na₂O. The need for the number of electrons lost being equal to the number of electrons gained explains why ionic compounds have the ratio of cations to anions that they do. This is required by the law of conservation of matter as well.

Example \(\PageIndex{1}\): Synthesis of calcium chloride from Elements

With arrows, illustrate the transfer of electrons to form calcium chloride from \((Ca)\) atoms and \((Cl)\) atoms.

SOLUTION

A \((Ca)\) atom has two valence electrons, while a \((Cl)\) atom has seven electrons. A \((Cl)\) atom needs only one more to complete its octet, while \((Ca)\) atoms have two electrons to lose. Thus we need two \(Cl\) atoms to accept the two electrons from one \((Ca)\) atom. The transfer process looks as follows:

The oppositely charged ions attract each other to make CaCl₂.

Exercise \(\PageIndex{1}\)

With arrows, illustrate the transfer of electrons to form potassium sulfide from \((K)\) atoms and \((S)\) atoms.

Answer:

Summary

- The tendency to form species that have eight electrons in the valence shell is called the octet rule.
- The attraction of oppositely charged ions caused by electron transfer is called an ionic bond.
- The strength of ionic bonding depends on the magnitude of the charges and the sizes of the ions.

Contributors

- Marisa Alviar-Agnew (Sacramento City College)
- Henry Agnew (UC Davis)