Chapter 1

1. **Chapter 1: The Chemical World**
2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed

Chapter 2

1. **Chapter 2: Measurement and Problem Solving**
2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)

Chapter 3

1. **Chapter 3: Matter and Energy**
2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises
• Chapter 4
 1. Chapter 4: Atoms and Elements
 2. 4.1: Experiencing Atoms at Tiburon
 3. 4.2: Indivisible: The Atomic Theory
 4. 4.3: The Nuclear Atom
 5. 4.4: The Properties of Protons, Neutrons, and Electrons
 6. 4.5: Elements: Defined by Their Numbers of Protons
 7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
 8. 4.7: Ions: Losing and Gaining Electrons
 9. 4.8: Isotopes: When the Number of Neutrons Varies
 10. 4.9: Atomic Mass: The Average Mass of an Element's Atoms

• Chapter 5
 1. Chapter 5: Molecules and Compounds
 2. 5.1: Sugar and Salt
 3. 5.2: Compounds Display Constant Composition
 4. 5.3: Chemical Formulas: How to Represent Compounds
 5. 5.4: A Molecular View of Elements and Compounds
 6. 5.5: Writing Formulas for Ionic Compounds
 7. 5.6: Nomenclature: Naming Compounds
 8. 5.7: Naming Ionic Compounds
 9. 5.8: Naming Molecular Compounds
 10. 5.9: Naming Acids
 11. 5.10: Nomenclature Summary
 12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

• Chapter 6
 1. Chapter 6: Chemical Composition
 2. 6.1: How Much Sodium?
 3. 6.2: Counting Nails by the Pound
 4. 6.3: Counting Atoms by the Gram
 5. 6.4: Counting Molecules by the Gram
 6. 6.5: Chemical Formulas as Conversion Factors
 7. 6.6: Mass Percent Composition of Compounds
 8. 6.7: Mass Percent Composition from a Chemical Formula
 9. 6.8: Calculating Empirical Formulas for Compounds
 10. 6.9: Calculating Molecular Formulas for Compounds

• Chapter 7
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix

Chapter 11
1. Chapter 11: Gases
2. 11.1: Extra-Long Straws
3. 11.2: Kinetic Molecular Theory: A Model for Gases
4. 11.3: Pressure: The Result of Constant Molecular Collisions
5. 11.4: Boyle’s Law: Pressure and Volume
6. 11.5: Charles’s Law: Volume and Temperature
7. 11.6: Gay-Lussac's Law: Temperature and Pressure
8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
9. 11.8: Avogadro’s Law: Volume and Moles
10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
12. 11.11: Gases in Chemical Reactions

Chapter 12
1. Chapter 12: Liquids, Solids, and Intermolecular Forces
2. 12.1: Interactions between Molecules
3. 12.2: Properties of Liquids and Solids
4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
5. 12.4: Evaporation and Condensation
6. 12.5: Melting, Freezing, and Sublimation
7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
9. 12.8: Water: A Remarkable Molecule

Chapter 13
1. Chapter 13: Solutions
2. 13.1: Prelude - Tragedy in Cameroon
3. 13.2: Solutions: Homogeneous Mixtures
4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
6. 13.5: Solution Concentration: Mass Percent
LEARNING OBJECTIVES

- Relate the electron configurations of the elements to the shape of the periodic table.
- Determine the expected electron configuration of an element by its place on the periodic table.

Previously, we introduced the periodic table as a tool for organizing the known chemical elements. A periodic table is shown in Figure \(\PageIndex{1}\)). The elements are listed by atomic number (the number of protons in the nucleus), and elements with similar chemical properties are grouped together in columns.

Why does the periodic table have the structure it does? The answer is rather simple, if you understand electron
configurations: the shape of the periodic table mimics the filling of the subshells with electrons.

Let us start with H and He. Their electron configurations are $1s^1$ and $1s^2$, respectively; with He, the $n = 1$ shell is filled. These two elements make up the first row of the periodic table (Figure \(\PageIndex{2}\)).

![1s Subshell](image)

Figure \(\PageIndex{2}\): The 1s Subshell. H and He represent the filling of the 1s subshell.

The next two electrons, for Li and Be, would go into the 2s subshell. Figure \(\PageIndex{3}\) shows that these two elements are adjacent on the periodic table.

![2s Subshell](image)

Figure \(\PageIndex{3}\): The 2s Subshell. In Li and Be, the 2s subshell is being filled.

For the next six elements, the 2p subshell is being occupied with electrons. On the right side of the periodic table, these six elements (B through Ne) are grouped together (Figure \(\PageIndex{4}\)).
The 2\textit{p} Subshell. For B through Ne, the 2\textit{p} subshell is being occupied.

The next subshell to be filled is the 3\textit{s} subshell. The elements when this subshell is being filled, Na and Mg, are back on the left side of the periodic table (Figure \(\PageIndex{5}\)).

Next, the 3\textit{p} subshell is filled with the next six elements (Figure \(\PageIndex{6}\)).

Instead of filling the 3\textit{d} subshell next, electrons go into the 4\textit{s} subshell (Figure \(\PageIndex{7}\)).
Figure \(\PageIndex{7}\): The 4s Subshell. The 4s subshell is filled before the 3d subshell. This is reflected in the structure of the periodic table.

After the 4s subshell is filled, the 3d subshell is filled with up to 10 electrons. This explains the section of 10 elements in the middle of the periodic table (Figure \(\PageIndex{8}\)).

Figure \(\PageIndex{8}\): The 3d Subshell. The 3d subshell is filled in the middle section of the periodic table.

And so forth. As we go across the rows of the periodic table, the overall shape of the table outlines how the electrons are occupying the shells and subshells.

The first two columns on the left side of the periodic table are where the s subshells are being occupied. Because of this, the first two rows of the periodic table are labeled the s block. Similarly, the p block are the right-most six columns of the periodic table, the d block is the middle 10 columns of the periodic table, while the f block is the 14-column section that is normally depicted as detached from the main body of the periodic table. It could be part of the main body, but then the periodic table would be rather long and cumbersome. Figure \(\PageIndex{9}\) shows the blocks of the periodic table.
Figure \((\PageIndex{9})\): Blocks on the Periodic Table. The periodic table is separated into blocks depending on which subshell is being filled for the atoms that belong in that section.

The electrons in the highest-numbered shell, plus any electrons in the last unfilled subshell, are called **valence electrons**; the highest-numbered shell is called the **valence shell**. (The inner electrons are called **core electrons**.) The valence electrons largely control the chemistry of an atom. If we look at just the valence shell’s electron configuration, we find that in each column, the valence shell’s electron configuration is the same. For example, take the elements in the first column of the periodic table: H, Li, Na, K, Rb, and Cs. Their electron configurations (abbreviated for the larger atoms) are as follows, with the valence shell electron configuration highlighted:

\[
\begin{align*}
\text{H:} & \quad 1s^1 \\
\text{Li:} & \quad 1s^22s^1 \\
\text{Na:} & \quad [\text{Ne}]3s^1 \\
\text{K:} & \quad [\text{Ar}]4s^1 \\
\text{Rb:} & \quad [\text{Kr}]5s^1 \\
\text{Cs:} & \quad [\text{Xe}]6s^1
\end{align*}
\]

They all have a similar electron configuration in their valence shells: a single s electron. Because much of the chemistry of an element is influenced by valence electrons, we would expect that these elements would have similar chemistry—*and they do*. The organization of electrons in atoms explains not only the shape of the periodic table but also the fact that elements in the same column of the periodic table have similar chemistry.

The same concept applies to the other columns of the periodic table. Elements in each column have the same valence shell electron configurations, and the elements have some similar chemical properties. This is strictly true for all elements in the s and p blocks. In the d and f blocks, because there are exceptions to the order of filling of subshells with electrons, similar valence shells are not absolute in these blocks. However, many similarities do exist in these blocks, so a similarity in chemical properties is expected.

Similarity of valence shell electron configuration implies that we can determine the electron configuration of an atom solely by its position on the periodic table. Consider Se, as shown in Figure \((\PageIndex{10})\). It is in the fourth column...
of the \(p \) block. This means that its electron configuration should end in a \(p^4 \) electron configuration. Indeed, the electron configuration of \(\text{Se} \) is \([\text{Ar}]4s^23d^{10}4p^4\), as expected.

\[
\text{Se}
\]

Figure 10: Selenium on the Periodic Table

Example 1: Predicting Electron Configurations

From the element's position on the periodic table, predict the valence shell electron configuration for each atom (Figure 11).

\[
\begin{align*}
\text{Ca} & \\
\text{Ti} & \\
\text{Sn} & \\
\end{align*}
\]

Figure 11: Various Elements on the Periodic Table

a. \(\text{Ca} \)

b. \(\text{Sn} \)

Solution

a. \(\text{Ca} \) is located in the second column of the \(s \) block. We would expect that its electron configuration should end with \(s^2 \). Calcium's electron configuration is \([\text{Ar}]4s^2\).

b. \(\text{Sn} \) is located in the second column of the \(p \) block, so we expect that its electron configuration would end in \(p^2 \). Tin's electron configuration is \([\text{Kr}]5s^24d^{10}5p^2\).

Exercise

From the element's position on the periodic table, predict the valence shell electron configuration for each atom. (Figure 11).
a. Ti
b. Cl

Answer a

\([\text{Ar}]4s^23d^2\)

Answer b

\([\text{Ne}]3s^23p^5\)

Summary

The arrangement of electrons in atoms is responsible for the shape of the periodic table. Electron configurations can be predicted by the position of an atom on the periodic table.

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- Marisa Alviar-Agnew (Sacramento City College)
- Henry Agnew (UC Davis)