• Chapter 4
 1. Chapter 4: Atoms and Elements
 2. 4.1: Experiencing Atoms at Tiburon
 3. 4.2: Indivisible: The Atomic Theory
 4. 4.3: The Nuclear Atom
 5. 4.4: The Properties of Protons, Neutrons, and Electrons
 6. 4.5: Elements: Defined by Their Numbers of Protons
 7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
 8. 4.7: Ions: Losing and Gaining Electrons
 9. 4.8: Isotopes: When the Number of Neutrons Varies
 10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

• Chapter 5
 1. Chapter 5: Molecules and Compounds
 2. 5.1: Sugar and Salt
 3. 5.2: Compounds Display Constant Composition
 4. 5.3: Chemical Formulas: How to Represent Compounds
 5. 5.4: A Molecular View of Elements and Compounds
 6. 5.5: Writing Formulas for Ionic Compounds
 7. 5.6: Nomenclature: Naming Compounds
 8. 5.7: Naming Ionic Compounds
 9. 5.8: Naming Molecular Compounds
 10. 5.9: Naming Acids
 11. 5.10: Nomenclature Summary
 12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

• Chapter 6
 1. Chapter 6: Chemical Composition
 2. 6.1: How Much Sodium?
 3. 6.2: Counting Nails by the Pound
 4. 6.3: Counting Atoms by the Gram
 5. 6.4: Counting Molecules by the Gram
 6. 6.5: Chemical Formulas as Conversion Factors
 7. 6.6: Mass Percent Composition of Compounds
 8. 6.7: Mass Percent Composition from a Chemical Formula
 9. 6.8: Calculating Empirical Formulas for Compounds
 10. 6.9: Calculating Molecular Formulas for Compounds

• Chapter 7
Chapter 7: Chemical Reactions

1. Grade School Volcanoes, Automobiles, and Laundry Detergents
2. Evidence of a Chemical Reaction
3. The Chemical Equation
4. How to Write Balanced Chemical Equations
5. Aqueous Solutions and Solubility: Compounds Dissolved in Water
6. Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid
7. Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations
8. Acid–Base and Gas Evolution Reactions
9. Oxidation–Reduction Reactions
10. Classifying Chemical Reactions
11. The Activity Series

Chapter 8: Quantities in Chemical Reactions

1. Climate Change: Too Much Carbon Dioxide
2. Stoichiometry
3. Making Molecules: Mole-to-Mole Conversions
5. Limiting Reactant, Theoretical Yield, and Percent Yield
6. Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants
7. Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

Chapter 9: Electrons in Atoms and the Periodic Table

1. Electrons in Atoms and the Periodic Table
2. Blimps, Balloons, and Models of the Atom
3. Light: Electromagnetic Radiation
4. The Electromagnetic Spectrum
5. The Bohr Model: Atoms with Orbits
6. The Quantum-Mechanical Model: Atoms with Orbitals
7. Quantum-Mechanical Orbitals and Electron Configurations
8. Electron Configurations and the Periodic Table
9. The Explanatory Power of the Quantum-Mechanical Model

Chapter 10: Chemical Bonding

1. Bonding Models and AIDS Drugs
2. Representing Valence Electrons with Dots
4. **10.3: Lewis Structures of Ionic Compounds: Electrons Transferred**
5. **10.4: Covalent Lewis Structures: Electrons Shared**
6. **10.5: Writing Lewis Structures for Covalent Compounds**
7. **10.6: Resonance: Equivalent Lewis Structures for the Same Molecule**
8. **10.7: Predicting the Shapes of Molecules**
9. **10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix**

• Chapter 11

1. **Chapter 11: Gases**
2. **11.1: Extra-Long Straws**
3. **11.2: Kinetic Molecular Theory: A Model for Gases**
4. **11.3: Pressure: The Result of Constant Molecular Collisions**
 5. **11.4: Boyle’s Law: Pressure and Volume**
 6. **11.5: Charles’s Law: Volume and Temperature**
7. **11.6: Gay-Lussac’s Law: Temperature and Pressure**
8. **11.7: The Combined Gas Law: Pressure, Volume, and Temperature**
9. **11.8: Avogadro’s Law: Volume and Moles**
10. **11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles**
11. **11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen**
12. **11.11: Gases in Chemical Reactions**

• Chapter 12

1. **Chapter 12: Liquids, Solids, and Intermolecular Forces**
2. **12.1: Interactions between Molecules**
3. **12.2: Properties of Liquids and Solids**
4. **12.3: Intermolecular Forces in Action: Surface Tension and Viscosity**
 5. **12.4: Evaporation and Condensation**
 6. **12.5: Melting, Freezing, and Sublimation**
7. **12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole**
8. **12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic**
9. **12.8: Water: A Remarkable Molecule**

• Chapter 13

1. **Chapter 13: Solutions**
2. **13.1: Prelude - Tragedy in Cameroon**
3. **13.2: Solutions: Homogeneous Mixtures**
5. **13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz**
6. **13.5: Solution Concentration: Mass Percent**
Learning Objectives

- Write the correct formula for an ionic compound.
- Recognize polyatomic ions in chemical formulas.

Ionic compounds do not exist as molecules. In the solid state, ionic compounds are in crystal lattice containing many ions each of the cation and anion. An ionic formula, like NaCl, is an empirical formula. This formula merely indicates that sodium chloride is made of an equal number of sodium and chloride ions. Sodium sulfide, another ionic compound, has the formula Na_2S. This formula indicates that this compound is made up of twice as many sodium ions as sulfide ions. This section will teach you how to find the correct ratio of ions, so that you can write a correct formula.

If you know the name of a binary ionic compound, you can write its chemical formula. Start by writing the metal ion with its charge, followed by the nonmetal ion with its charge. Because the overall compound must be electrically neutral, decide how many of each ion is needed in order for the positive and negative charge to cancel each other out. Example: Aluminum Nitride and Lithium Oxide

Write the formula for aluminum nitride and lithium oxide.

Solution
Write the formula for aluminum nitride

\[
\ce{Al^{3+}} \quad \ce{N^{3-}}
\]

Write the formula for lithium oxide

\[
\ce{Li^+} \quad \ce{O^{2-}}
\]

1. Write the symbol and charge of the cation (metal) first and the anion (nonmetal) second.

2. Use a multiplier to make the total charge of the cations and anions equal to each other.

 \[
 \text{total charge of cations} = \text{total charge of anions}
 \]

 \[
 1(3+) = 1(3-)
 \]

 \[
 +3 = -3
 \]

3. Use the multipliers as subscript for each ion.

 \[
 \ce{Al_1N_1}
 \]

4. Write the final formula. Leave out all charges and all subscripts that are 1.

 \[
 \ce{AlN}
 \]

An alternative way to writing a correct formula for an ionic compound is to use the crisscross method. In this method, the numerical value of each of the ion charges is crossed over to become the subscript of the other ion. Signs of the charges are dropped.

Example \(\PageIndex{2}\): The Crisscross Method for lead (IV) oxide

Write the formula for lead (IV) oxide.

\[
\ce{Pb^{4+}} \quad \ce{O^{2-}}
\]

Solution

<table>
<thead>
<tr>
<th>Crisscross Method</th>
<th>Write the formula for lead (IV) oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Write the symbol and charge of the cation (metal) first and the anion (nonmetal) second.</td>
<td>(\ce{Pb^{4+}} \quad \ce{O^{2-}})</td>
</tr>
<tr>
<td>2. Transpose only the number of the positive charge to become the subscript of the anion and the number only of the negative charge to become the subscript of the cation.</td>
<td>(\ce{Pb_2O_4})</td>
</tr>
<tr>
<td>3. Reduce to the lowest ratio.</td>
<td>(\ce{Pb_2O_4})</td>
</tr>
<tr>
<td>4. Write the final formula. Leave out all subscripts that are 1.</td>
<td>(\ce{PbO_2})</td>
</tr>
</tbody>
</table>

Exercise \(\PageIndex{2}\))

Write the chemical formula for an ionic compound composed of each pair of ions.

a. the calcium ion and the oxygen ion
b. the 2+ copper ion and the sulfur ion
c. the 1+ copper ion and the sulfur ion

Answer a:
CaO

Answer b:
CuS

Answer c:
Cu₂S

Be aware that ionic compounds are empirical formulas and so must be written as the lowest ratio of the ions.

Example (∇PageIndex(3)): Sulfur Compound

Write the formula for sodium combined with sulfur.

Solution

<table>
<thead>
<tr>
<th>Crisscross Method</th>
<th>Write the formula for sodium combined with sulfur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Write the symbol and charge of the cation (metal) first and the anion (nonmetal) second.</td>
<td>(\text{\ce{Na^{+}}} \quad \text{\ce{S^{2-}}})</td>
</tr>
<tr>
<td>2. Transpose only the number of the positive charge to become the subscript of the anion and the number only of the negative charge to become the subscript of the cation.</td>
<td>(\text{Na}^{1+} \quad \text{\ce{S^{2-}}})</td>
</tr>
<tr>
<td>3. Reduce to the lowest ratio.</td>
<td>This step is not necessary.</td>
</tr>
<tr>
<td>4. Write the final formula. Leave out all subscripts that are 1.</td>
<td>(\text{\ce{Na_2S}}))</td>
</tr>
</tbody>
</table>

Exercise (∇PageIndex(3))

Write the formula for each ionic compound.

a. sodium bromide
b. lithium chloride
c. magnesium oxide

Answer a:
NaBr
Answer b:
LiCl

Answer c:
MgO

Polyatomic Ions

Some ions consist of groups of atoms bonded together and have an overall electric charge. Because these ions contain more than one atom, they are called polyatomic ions. Polyatomic ions have characteristic formulas, names, and charges that should be memorized. For example, NO$_3^-$ is the nitrate ion; it has one nitrogen atom and three oxygen atoms and an overall 1^- charge. Table lists the most common polyatomic ions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium ion</td>
<td>NH$_4^+$</td>
</tr>
<tr>
<td>acetate ion</td>
<td>C$_2$H$_3$O$_2^-$ (also written CH$_3$CO$_2^-$)</td>
</tr>
<tr>
<td>carbonate ion</td>
<td>CO$_3^{2-}$</td>
</tr>
<tr>
<td>chromate ion</td>
<td>CrO$_4^{2-}$</td>
</tr>
<tr>
<td>dichromate ion</td>
<td>Cr$_2$O$_7^{2-}$</td>
</tr>
<tr>
<td>hydrogen carbonate ion (bicarbonate ion)</td>
<td>HCO$_3^-$</td>
</tr>
<tr>
<td>cyanide ion</td>
<td>CN$^-$</td>
</tr>
<tr>
<td>hydroxide ion</td>
<td>OH$^-$</td>
</tr>
<tr>
<td>nitrate ion</td>
<td>NO$_3^-$</td>
</tr>
<tr>
<td>nitrite ion</td>
<td>NO$_2^-$</td>
</tr>
<tr>
<td>permanganate ion</td>
<td>MnO$_4^-$</td>
</tr>
<tr>
<td>phosphate ion</td>
<td>PO$_4^{3-}$</td>
</tr>
<tr>
<td>hydrogen phosphate ion</td>
<td>HPO$_4^{2-}$</td>
</tr>
<tr>
<td>dihydrogen phosphate ion</td>
<td>H$_2$PO$_4^-$</td>
</tr>
<tr>
<td>sulfate ion</td>
<td>SO$_4^{2-}$</td>
</tr>
</tbody>
</table>
Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen sulfate ion (bisulfate ion)</td>
<td>HSO$_4^-$</td>
</tr>
<tr>
<td>sulfite ion</td>
<td>SO$_3^{2-}$</td>
</tr>
</tbody>
</table>

The rule for constructing formulas for ionic compounds containing polyatomic ions is the same as for formulas containing monatomic (single-atom) ions: the positive and negative charges must balance. If more than one of a particular polyatomic ion is needed to balance the charge, the entire formula for the polyatomic ion must be enclosed in parentheses, and the numerical subscript is placed outside the parentheses. This is to show that the subscript applies to the entire polyatomic ion. An example is Ba(NO$_3$)$_2$.

Writing Formulas for Ionic Compounds Containing Polyatomic Ions

Writing a formula for ionic compounds containing polyatomic ions also involves the same steps as for a binary ionic compound. Write the symbol and charge of the cation followed by the symbol and charge of the anion.

Example: Calcium Nitrate

Write the formula for calcium nitrate.

Solution

<table>
<thead>
<tr>
<th>Criss Cross Method</th>
<th>Write the formula for calcium nitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Write the symbol and charge of the cation (metal) first and the anion (nonmetal) second.</td>
<td>(\text{Ca}^{2+} \quad \text{NO}_3^{-})</td>
</tr>
<tr>
<td>2. Transpose only the number of the positive charge to become the subscript of the anion and the number only of the negative charge to become the subscript of the cation.</td>
<td>(\text{Ca}_1\text{(NO}_3\text{)}_2)</td>
</tr>
<tr>
<td>3. Reduce to the lowest ratio.</td>
<td>(\text{Ca(NO}_3\text{)}_2)</td>
</tr>
<tr>
<td>4. Write the final formula. Leave out all subscripts that are 1. If there is only 1 of the polyatomic ion, leave off parentheses.</td>
<td>(\text{Ca(NO}_3\text{)}_2)</td>
</tr>
</tbody>
</table>

Example

Write the chemical formula for an ionic compound composed of the potassium ion and the sulfate ion

Solution
Potassium ions have a charge of 1+, while sulfate ions have a charge of 2−. We will need two potassium ions to balance the charge on the sulfate ion, so the proper chemical formula is K_2SO_4.

Exercise (PageIndex{5})

Write the chemical formula for an ionic compound composed of each pair of ions.

- a. the magnesium ion and the carbonate ion
- b. the aluminum ion and the acetate ion

Answer a:
$MgCO_3$

Answer b:
$Al(CH_3COO)_3$

Recognizing Ionic Compounds

There are two ways to recognize ionic compounds. First, compounds between metal and nonmetal elements are usually ionic. For example, CaBr$_2$ contains a metallic element (calcium, a **group 2 (or 2A)** metal) and a nonmetallic element (bromine, a **group 17 (or 7A)** nonmetal). Therefore, it is most likely an ionic compound. (In fact, it is ionic.) In contrast, the compound NO$_2$ contains two elements that are both nonmetals (nitrogen, from **group 15 (or 5A)**, and oxygen, from **group 16 (or 6A)**. It is not an ionic compound; it belongs to the category of covalent compounds discussed elsewhere. Also note that this combination of nitrogen and oxygen has no electric charge specified, so it is not the nitrite ion.

Second, if you recognize the formula of a polyatomic ion in a compound, the compound is ionic. For example, if you see the formula Ba(NO$_3$)$_2$, you may recognize the “NO$_3$” part as the nitrate ion, NO$_3^−$. (Remember that the convention for writing formulas for ionic compounds is not to include the ionic charge.) This is a clue that the other part of the formula, Ba, is actually the Ba$^{2+}$ ion, with the 2+ charge balancing the overall 2− charge from the two nitrate ions. Thus, this compound is also ionic.

Example (PageIndex{6})

Identify each compound as ionic or not ionic.

- a. Na$_2$O
- b. PCl$_3$
- c. NH$_4$Cl
- d. OF$_2$

SOLUTION
Explanation

a. Sodium is a metal, and oxygen is a nonmetal. Therefore, \(\text{Na}_2\text{O} \) is expected to be ionic.
\(\text{(Na}_2\text{O}) \), ionic

b. Both phosphorus and chlorine are nonmetals. Therefore, \(\text{PCl}_3 \) is not ionic.
\(\text{(PCl}_3 \), not ionic

c. The \(\text{NH}_4 \) in the formula represents the ammonium ion, \(\text{NH}_4^+ \), which indicates that this compound is ionic.
\(\text{(NH}_4\text{Cl}) \), ionic

d. Both oxygen and fluorine are nonmetals. Therefore, \(\text{OF}_2 \) is not ionic.
\(\text{(OF}_2 \), ionic

Exercise \(\PageIndex{6} \)

Identify each compound as ionic or not ionic.

a. \(\text{N}_2\text{O} \)
b. \(\text{FeCl}_3 \)
c. \((\text{NH}_4)_3\text{PO}_4 \)
d. \(\text{SOCl}_2 \)

Answer a:
not ionic

Answer b:
ionic

Answer c:
ionic

Answer d:
not ionic

Summary

Formulas for ionic compounds contain the symbols and number of each atom present in a compound in the lowest whole number ratio.

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- [CK-12 Foundation](https://www.ck12.org) by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
- [Marisa Alviar-Agnew](https://www.sacramentocitycollege.edu) (Sacramento City College)
• Henry Agnew (UC Davis)