Chapter 1
1. Chapter 1: The Chemical World
2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed
 • Chapter 2
1. Chapter 2: Measurement and Problem Solving
2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)
 • Chapter 3
1. Chapter 3: Matter and Energy
2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises
 • Chapter 4
1. Chapter 4: Atoms and Elements
4.1: Experiencing Atoms at Tiburon
4.2: Indivisible: The Atomic Theory
4.3: The Nuclear Atom
4.4: The Properties of Protons, Neutrons, and Electrons
4.5: Elements: Defined by Their Numbers of Protons
4.6: Looking for Patterns: The Periodic Law and the Periodic Table
4.7: Ions: Losing and Gaining Electrons
4.8: Isotopes: When the Number of Neutrons Varies
4.9: Atomic Mass: The Average Mass of an Element’s Atoms

Chapter 5

5.1: Sugar and Salt
5.2: Compounds Display Constant Composition
5.3: Chemical Formulas: How to Represent Compounds
5.4: A Molecular View of Elements and Compounds
5.5: Writing Formulas for Ionic Compounds
5.6: Nomenclature: Naming Compounds
5.7: Naming Ionic Compounds
5.8: Naming Molecular Compounds
5.9: Naming Acids
5.10: Nomenclature Summary
5.11: Formula Mass: The Mass of a Molecule or Formula Unit

Chapter 6

6.1: How Much Sodium?
6.2: Counting Nails by the Pound
6.3: Counting Atoms by the Gram
6.4: Counting Molecules by the Gram
6.5: Chemical Formulas as Conversion Factors
6.6: Mass Percent Composition of Compounds
6.7: Mass Percent Composition from a Chemical Formula
6.8: Calculating Empirical Formulas for Compounds
6.9: Calculating Molecular Formulas for Compounds

Chapter 7

7.1: Grade School Volcanoes, Automobiles, and Laundry Detergents
7.2: Evidence of a Chemical Reaction
7.3: The Chemical Equation
5. 7.4: How to Write Balanced Chemical Equations
6. 7.5: Aqueous Solutions and Solubility: Compounds Dissolved in Water
7. 7.6: Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid
8. 7.7: Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations
9. 7.8: Acid–Base and Gas Evolution Reactions
10. 7.9: Oxidation–Reduction Reactions
11. 7.10: Classifying Chemical Reactions
12. 7.11: The Activity Series

Chapter 8
1. Chapter 8: Quantities in Chemical Reactions
2. 8.1: Climate Change: Too Much Carbon Dioxide
3. 8.2: Stoichiometry
4. 8.3: Making Molecules: Mole-to-Mole Conversions
5. 8.4: Making Molecules: Mass-to-Mass Conversions
6. 8.5: Limiting Reactant, Theoretical Yield, and Percent Yield
7. 8.6: Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants
8. 8.7: Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

Chapter 9
1. Chapter 9: Electrons in Atoms and the Periodic Table
2. 9.1: Blimps, Balloons, and Models of the Atom
3. 9.2: Light: Electromagnetic Radiation
4. 9.3: The Electromagnetic Spectrum
5. 9.4: The Bohr Model: Atoms with Orbits
6. 9.5: The Quantum-Mechanical Model: Atoms with Orbitals
7. 9.6: Quantum-Mechanical Orbitals and Electron Configurations
8. 9.7: Electron Configurations and the Periodic Table
9. 9.8: The Explanatory Power of the Quantum-Mechanical Model
10. 9.9: Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character

Chapter 10
1. Chapter 10: Chemical Bonding
2. 10.1: Bonding Models and AIDS Drugs
3. 10.2: Representing Valence Electrons with Dots
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix
• Chapter 11
 1. Chapter 11: Gases
 2. 11.1: Extra-Long Straws
 3. 11.2: Kinetic Molecular Theory: A Model for Gases
 4. 11.3: Pressure: The Result of Constant Molecular Collisions
 5. 11.4: Boyle’s Law: Pressure and Volume
 6. 11.5: Charles’s Law: Volume and Temperature
 7. 11.6: Gay-Lussac’s Law: Temperature and Pressure
 8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
 9. 11.8: Avogadro’s Law: Volume and Moles
 10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
12. 11.11: Gases in Chemical Reactions
• Chapter 12
 1. Chapter 12: Liquids, Solids, and Intermolecular Forces
 2. 12.1: Interactions between Molecules
 3. 12.2: Properties of Liquids and Solids
 4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
 5. 12.4: Evaporation and Condensation
 6. 12.5: Melting, Freezing, and Sublimation
 7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
 8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
 9. 12.8: Water: A Remarkable Molecule
• Chapter 13
 1. Chapter 13: Solutions
 2. 13.1: Prelude - Tragedy in Cameroon
 3. 13.2: Solutions: Homogeneous Mixtures
 4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
 5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
 6. 13.5: Solution Concentration: Mass Percent
 7. 13.6: Solution Concentration: Molarity
 8. 13.7: Solution Dilution
 9. 13.8: Solution Stoichiometry
 10. 13.9: Freezing Point Depression and Boiling Point Elevation: Making Water Freeze Colder and Boil Hotter
11. 13.10: Osmosis: Why Drinking Salt Water Causes Dehydration
• Chapter 14
 1. Chapter 14: Acids and Bases
 2. 14.1: Sour Patch Kids and International Spy Movies
Dalton's Atomic Theory explained a lot about matter, chemicals, and chemical reactions. Nevertheless, it was not entirely accurate, because contrary to what Dalton believed, atoms can, in fact, be broken apart into smaller subunits or subatomic particles. We have been talking about the electron in great detail, but there are two other particles of interest to use: protons and neutrons. We already learned that J. J. Thomson discovered a negatively charged particle, called the electron. Rutherford proposed that these electrons orbit a positive nucleus. In subsequent experiments, he found that there is a smaller positively charged particle in the nucleus which is called a proton. There is a third subatomic particle, known as a neutron.

Electrons

Electrons are one of three main types of particles that make up atoms. The other two types are protons and neutrons. Unlike protons and neutrons, which consist of smaller, simpler particles, electrons are fundamental particles that do not consist of smaller particles. They are a type of fundamental particles called leptons. All leptons have an electric charge of \(-1\) or \(0\). Electrons are extremely small. The mass of an electron is only about 1/2000 the mass of a proton or neutron, so electrons contribute virtually nothing to the total mass of an atom. Electrons have an electric charge of \(-1\), which is equal but opposite to the charge of a proton, which is \(+1\). All atoms have the same number of electrons as protons, so the positive and negative charges "cancel out", making atoms electrically neutral.

Unlike protons and neutrons, which are located inside the nucleus at the center of the atom, electrons are found outside the nucleus. Because opposite electric charges attract each other, negative electrons are attracted to the positive nucleus. This force of attraction keeps electrons constantly moving through the otherwise empty space around the nucleus. The figure below is a common way to represent the structure of an atom. It shows the electron as a particle orbiting the nucleus, similar to the way that planets orbit the sun. This is however, an incorrect perspective, as electrons are more complicated as quantum mechanics demonstrate.
Figure \(\PageIndex{1}\): Electrons are much smaller than protons or neutrons. If an electrons were the mass of a penny, a proton or a neutrons would have the mass of a large bowling ball!

Protons

A proton is one of three main particles that make up the atom. The other two particles are the neutron and electron. Protons are found in the nucleus of the atom. This is a tiny, dense region at the center of the atom. Protons have a positive electrical charge of one \(+1\) and a mass of 1 atomic mass unit \(\text{amu}\), which is about \(1.67 \times 10^{-27}\) kilograms. Together with neutrons, they make up virtually all of the mass of an atom.

Neutrons

Atoms of all elements - except for most atoms of hydrogen - have neutrons in their nucleus. Unlike protons and electrons, which are electrically charged, neutrons have no charge - they are electrically neutral. That's why the neutrons in the diagram above are labeled \(n^0\). The zero stands for "zero charge". The mass of a neutron is slightly greater than the mass of a proton, which is 1 atomic mass unit \(\text{amu}\). (An atomic mass unit equals about \(1.67 \times 10^{-27}\) kilograms.) A neutron also has about the same diameter as a proton, or \(1.7 \times 10^{17}\) meters.

As you might have already guessed from its name, the neutron is neutral. In other words, it has no charge whatsoever, and is therefore neither attracted to nor repelled from other objects. Neutrons are in every atom (with one exception), and they're bound together with other neutrons and protons in the atomic nucleus.

Before we move on, we must discuss how the different types of subatomic particles interact with each other. When it comes to neutrons, the answer is obvious. Since neutrons are neither attracted to nor repelled from objects, they don't really interact with protons or electrons (beyond being bound into the nucleus with the protons).

Even though electrons, protons, and neutrons are all types of subatomic particles, they are not all the same size. When you compare the masses of electrons, protons, and neutrons, what you find is that electrons have an extremely small mass, compared to either protons or neutrons. On the other hand, the masses of protons and neutrons are fairly similar, although technically, the mass of a neutron is slightly larger than the mass of a proton. Because protons and neutrons are
so much more massive than electrons, almost all of the mass of any atom comes from the nucleus, which contains all of the neutrons and protons.

Table \(\PageIndex{1}\): Properties of Subatomic Particles

<table>
<thead>
<tr>
<th>Particle</th>
<th>Symbol</th>
<th>Mass (kg)</th>
<th>Relative Mass (proton = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>(p^+)</td>
<td>(1.673 \times 10^{-27})</td>
<td>1</td>
</tr>
<tr>
<td>electron</td>
<td>(e^-)</td>
<td>(9.109 \times 10^{-31})</td>
<td>0.00055</td>
</tr>
<tr>
<td>neutron</td>
<td>(n^0)</td>
<td>(1.675 \times 10^{-27})</td>
<td>1</td>
</tr>
</tbody>
</table>

Table \(\PageIndex{1}\) gives the properties and locations of electrons, protons, and neutrons. The second column shows the masses of the three subatomic particles in “atomic mass units.” An atomic mass unit (\(\text{amu}\)) is defined as one-twelfth the mass of a carbon-12 atom. Atomic mass units (\(\text{amu}\)) are useful, because, as you can see, the mass of a proton and the mass of a neutron are almost exactly \(1.0\) in this unit system.

Negative and positive charges of equal magnitude cancel each other out. This means that the negative charge on an electron perfectly balances the positive charge on the proton. In other words, a neutral atom must have exactly one electron for every proton. If a neutral atom has 1 proton, it must have 1 electron. If a neutral atom has 2 protons, it must have 2 electrons. If a neutral atom has 10 protons, it must have 10 electrons. You get the idea. In order to be neutral, an atom must have the same number of electrons and protons.

Summary

- Electrons are a type of subatomic particle with a negative charge.
- Protons are a type of subatomic particle with a positive charge. Protons are bound together in an atom's nucleus as a result of the strong nuclear force.
- Neutrons are a type of subatomic particle with no charge (they're neutral). Like protons, neutrons are bound into the atom's nucleus as a result of the strong nuclear force.
- Protons and neutrons have approximately the same mass, but they are both much more massive than electrons (approximately 2,000 times as massive as an electron).
- The positive charge on a proton is equal in magnitude to the negative charge on an electron. As a result, a neutral atom must have an equal number of protons and electrons.
- The atomic mass unit (amu) is a unit of mass equal to one-twelfth the mass of a carbon-12 atom

Contributors

- [CK-12 Foundation](#) by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
• Marisa Alviar-Agnew (Sacramento City College)

• Henry Agnew (UC Davis)