Chapter 1

1. Chapter 1: The Chemical World
 2. 1.1: The Scope of Chemistry
 3. 1.2: Chemicals Compose Ordinary Things
 4. 1.3: Hypothesis, Theories, and Laws
 5. 1.4: The Scientific Method: How Chemists Think
 6. 1.5: A Beginning Chemist: How to Succeed

 • Chapter 2

 1. Chapter 2: Measurement and Problem Solving
 2. 2.1: Taking Measurements
 3. 2.2: Scientific Notation: Writing Large and Small Numbers
 4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
 5. 2.4: Significant Figures in Calculations
 6. 2.5: The Basic Units of Measurement
 7. 2.6: Problem Solving and Unit Conversions
 8. 2.7: Solving Multistep Conversion Problems
 9. 2.8: Units Raised to a Power
 10. 2.9: Density
 11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
 12. 2.E: Measurement and Problem Solving (Exercises)

 • Chapter 3

 1. Chapter 3: Matter and Energy
 2. 3.1: In Your Room
 3. 3.2: What is Matter?
 4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
 5. 3.4: Classifying Matter According to Its Composition
 6. 3.5: Differences in Matter: Physical and Chemical Properties
 7. 3.6: Changes in Matter: Physical and Chemical Changes
 8. 3.7: Conservation of Mass: There is No New Matter
 9. 3.8: Energy
 10. 3.9: Energy and Chemical and Physical Change
 11. 3.10: Temperature: Random Motion of Molecules and Atoms
 12. 3.11: Temperature Changes: Heat Capacity

14. **3.E: Exercises**

- **Chapter 4**
 1. Chapter 4: Atoms and Elements
 2. 4.1: Experiencing Atoms at Tiburon
 3. 4.2: Indivisible: The Atomic Theory
 4. 4.3: The Nuclear Atom
 5. 4.4: The Properties of Protons, Neutrons, and Electrons
 6. 4.5: Elements: Defined by Their Numbers of Protons
 7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
 8. 4.7: Ions: Losing and Gaining Electrons
 9. 4.8: Isotopes: When the Number of Neutrons Varies
 10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

- **Chapter 5**
 1. Chapter 5: Molecules and Compounds
 2. 5.1: Sugar and Salt
 3. 5.2: Compounds Display Constant Composition
 4. 5.3: Chemical Formulas: How to Represent Compounds
 5. 5.4: A Molecular View of Elements and Compounds
 6. 5.5: Writing Formulas for Ionic Compounds
 7. 5.6: Nomenclature: Naming Compounds
 8. 5.7: Naming Ionic Compounds
 9. 5.8: Naming Molecular Compounds
 10. 5.9: Naming Acids
 11. 5.10: Nomenclature Summary
 12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

- **Chapter 6**
 1. Chapter 6: Chemical Composition
 2. 6.1: How Much Sodium?
 3. 6.2: Counting Nails by the Pound
 4. 6.3: Counting Atoms by the Gram
 5. 6.4: Counting Molecules by the Gram
 6. 6.5: Chemical Formulas as Conversion Factors
 7. 6.6: Mass Percent Composition of Compounds
 8. 6.7: Mass Percent Composition from a Chemical Formula
 9. 6.8: Calculating Empirical Formulas for Compounds
10. **6.9: Calculating Molecular Formulas for Compounds**
 - *Chapter 7*

1. **Chapter 7: Chemical Reactions**
2. **7.1: Grade School Volcanoes, Automobiles, and Laundry Detergents**
3. **7.2: Evidence of a Chemical Reaction**
4. **7.3: The Chemical Equation**
5. **7.4: How to Write Balanced Chemical Equations**
6. **7.5: Aqueous Solutions and Solubility: Compounds Dissolved in Water**
7. **7.6: Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid**
8. **7.7: Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations**
9. **7.8: Acid–Base and Gas Evolution Reactions**
10. **7.9: Oxidation–Reduction Reactions**
11. **7.10: Classifying Chemical Reactions**
12. **7.11: The Activity Series**

- *Chapter 8*

1. **Chapter 8: Quantities in Chemical Reactions**
2. **8.1: Climate Change: Too Much Carbon Dioxide**
3. **8.2: Stoichiometry**
4. **8.3: Making Molecules: Mole-to-Mole Conversions**
5. **8.4: Making Molecules: Mass-to-Mass Conversions**
6. **8.5: Limiting Reactant, Theoretical Yield, and Percent Yield**
7. **8.6: Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants**
8. **8.7: Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction**

Chapter 9

1. **Chapter 9: Electrons in Atoms and the Periodic Table**
2. **9.1: Blimps, Balloons, and Models of the Atom**
3. **9.2: Light: Electromagnetic Radiation**
4. **9.3: The Electromagnetic Spectrum**
5. **9.4: The Bohr Model: Atoms with Orbits**
6. **9.5: The Quantum-Mechanical Model: Atoms with Orbitals**
7. **9.6: Quantum-Mechanical Orbitals and Electron Configurations**
8. **9.7: Electron Configurations and the Periodic Table**
9. **9.8: The Explanatory Power of the Quantum-Mechanical Model**

- *Chapter 10*
1. Chapter 10: Chemical Bonding
 2. 10.1: Bonding Models and AIDS Drugs
 3. 10.2: Representing Valence Electrons with Dots
 4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
 5. 10.4: Covalent Lewis Structures: Electrons Shared
 6. 10.5: Writing Lewis Structures for Covalent Compounds
 7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
 8. 10.7: Predicting the Shapes of Molecules
 9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix

 • Chapter 11
 1. Chapter 11: Gases
 2. 11.1: Extra-Long Straws
 3. 11.2: Kinetic Molecular Theory: A Model for Gases
 4. 11.3: Pressure: The Result of Constant Molecular Collisions
 5. 11.4: Boyle’s Law: Pressure and Volume
 6. 11.5: Charles’s Law: Volume and Temperature
 7. 11.6: Gay-Lussac's Law: Temperature and Pressure
 8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
 9. 11.8: Avogadro’s Law: Volume and Moles
 10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
 11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
 12. 11.11: Gases in Chemical Reactions

 • Chapter 12
 1. Chapter 12: Liquids, Solids, and Intermolecular Forces
 2. 12.1: Interactions between Molecules
 3. 12.2: Properties of Liquids and Solids
 4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
 5. 12.4: Evaporation and Condensation
 6. 12.5: Melting, Freezing, and Sublimation
 7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
 8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
 9. 12.8: Water: A Remarkable Molecule

 • Chapter 13
 1. Chapter 13: Solutions
 2. 13.1: Prelude - Tragedy in Cameroon
 3. 13.2: Solutions: Homogeneous Mixtures
This is a lecture and laboratory course that covers the fundamental concepts of chemistry. This course assumes no previous knowledge of chemistry, presenting both chemical problem solving and laboratory skills. This course is intended primarily to prepare students for CHEM 400.
2: Measurement and Problem Solving

3: Matter and Energy

4: Atoms and Elements

5: Molecules and Compounds
6: Chemical Composition

7: Chemical Reactions

<table>
<thead>
<tr>
<th>No.</th>
<th>No.</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>F 15</td>
</tr>
<tr>
<td>Li</td>
<td>2</td>
<td>Na 9</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
<td>Ca 17</td>
</tr>
<tr>
<td>Al</td>
<td>16</td>
<td>Ti 18</td>
</tr>
<tr>
<td>Si</td>
<td>14</td>
<td>Mn 18</td>
</tr>
<tr>
<td>P</td>
<td>17</td>
<td>Fe 21</td>
</tr>
</tbody>
</table>

8: Quantities in Chemical Reactions

9: Electrons in Atoms and the Periodic Table
10: Chemical Bonding

11: Gases

12: Liquids, Solids, and Intermolecular Forces

13: Solutions

14: Acids and Bases
15: Organic Chemistry of Hydrocarbons

16: Organic Functional Groups: Structure and Nomenclature