Chapter 1

1. Chapter 1: The Chemical World
2. 1.1: The Scope of Chemistry
3. 1.2: Chemicals Compose Ordinary Things
4. 1.3: Hypothesis, Theories, and Laws
5. 1.4: The Scientific Method: How Chemists Think
6. 1.5: A Beginning Chemist: How to Succeed

• Chapter 2

1. Chapter 2: Measurement and Problem Solving
2. 2.1: Taking Measurements
3. 2.2: Scientific Notation: Writing Large and Small Numbers
4. 2.3: Significant Figures: Writing Numbers to Reflect Precision
5. 2.4: Significant Figures in Calculations
6. 2.5: The Basic Units of Measurement
7. 2.6: Problem Solving and Unit Conversions
8. 2.7: Solving Multistep Conversion Problems
9. 2.8: Units Raised to a Power
10. 2.9: Density
11. 2.10: Numerical Problem-Solving Strategies and the Solution Map
12. 2.E: Measurement and Problem Solving (Exercises)

• Chapter 3

1. Chapter 3: Matter and Energy
2. 3.1: In Your Room
3. 3.2: What is Matter?
4. 3.3: Classifying Matter According to Its State: Solid, Liquid, and Gas
5. 3.4: Classifying Matter According to Its Composition
6. 3.5: Differences in Matter: Physical and Chemical Properties
7. 3.6: Changes in Matter: Physical and Chemical Changes
8. 3.7: Conservation of Mass: There is No New Matter
9. 3.8: Energy
10. 3.9: Energy and Chemical and Physical Change
11. 3.10: Temperature: Random Motion of Molecules and Atoms
12. 3.11: Temperature Changes: Heat Capacity
13. 3.12: Energy and Heat Capacity Calculations
14. 3.E: Exercises
Chapter 4

1. Chapter 4: Atoms and Elements
2. 4.1: Experiencing Atoms at Tiburon
3. 4.2: Indivisible: The Atomic Theory
4. 4.3: The Nuclear Atom
5. 4.4: The Properties of Protons, Neutrons, and Electrons
6. 4.5: Elements: Defined by Their Numbers of Protons
7. 4.6: Looking for Patterns: The Periodic Law and the Periodic Table
8. 4.7: Ions: Losing and Gaining Electrons
9. 4.8: Isotopes: When the Number of Neutrons Varies
10. 4.9: Atomic Mass: The Average Mass of an Element’s Atoms

Chapter 5

1. Chapter 5: Molecules and Compounds
2. 5.1: Sugar and Salt
3. 5.2: Compounds Display Constant Composition
4. 5.3: Chemical Formulas: How to Represent Compounds
5. 5.4: A Molecular View of Elements and Compounds
6. 5.5: Writing Formulas for Ionic Compounds
7. 5.6: Nomenclature: Naming Compounds
8. 5.7: Naming Ionic Compounds
9. 5.8: Naming Molecular Compounds
10. 5.9: Naming Acids
11. 5.10: Nomenclature Summary
12. 5.11: Formula Mass: The Mass of a Molecule or Formula Unit

Chapter 6

1. Chapter 6: Chemical Composition
2. 6.1: How Much Sodium?
3. 6.2: Counting Nails by the Pound
4. 6.3: Counting Atoms by the Gram
5. 6.4: Counting Molecules by the Gram
6. 6.5: Chemical Formulas as Conversion Factors
7. 6.6: Mass Percent Composition of Compounds
8. 6.7: Mass Percent Composition from a Chemical Formula
9. 6.8: Calculating Empirical Formulas for Compounds
10. 6.9: Calculating Molecular Formulas for Compounds

Chapter 7
4. 10.3: Lewis Structures of Ionic Compounds: Electrons Transferred
5. 10.4: Covalent Lewis Structures: Electrons Shared
6. 10.5: Writing Lewis Structures for Covalent Compounds
7. 10.6: Resonance: Equivalent Lewis Structures for the Same Molecule
8. 10.7: Predicting the Shapes of Molecules
9. 10.8: Electronegativity and Polarity: Why Oil and Water Don’t Mix

 • Chapter 11
 1. Chapter 11: Gases
 2. 11.1: Extra-Long Straws
 3. 11.2: Kinetic Molecular Theory: A Model for Gases
 4. 11.3: Pressure: The Result of Constant Molecular Collisions
 5. 11.4: Boyle’s Law: Pressure and Volume
 6. 11.5: Charles’s Law: Volume and Temperature
 7. 11.6: Gay-Lussac’s Law: Temperature and Pressure
 8. 11.7: The Combined Gas Law: Pressure, Volume, and Temperature
 9. 11.8: Avogadro’s Law: Volume and Moles
 10. 11.9: The Ideal Gas Law: Pressure, Volume, Temperature, and Moles
 11. 11.10: Mixtures of Gases: Why Deep-Sea Divers Breathe a Mixture of Helium and Oxygen
 12. 11.11: Gases in Chemical Reactions

 • Chapter 12
 1. Chapter 12: Liquids, Solids, and Intermolecular Forces
 2. 12.1: Interactions between Molecules
 3. 12.2: Properties of Liquids and Solids
 4. 12.3: Intermolecular Forces in Action: Surface Tension and Viscosity
 5. 12.4: Evaporation and Condensation
 6. 12.5: Melting, Freezing, and Sublimation
 7. 12.6: Types of Intermolecular Forces: Dispersion, Dipole–Dipole, Hydrogen Bonding, and Ion-Dipole
 8. 12.7: Types of Crystalline Solids: Molecular, Ionic, and Atomic
 9. 12.8: Water: A Remarkable Molecule

 • Chapter 13
 1. Chapter 13: Solutions
 2. 13.1: Prelude - Tragedy in Cameroon
 3. 13.2: Solutions: Homogeneous Mixtures
 4. 13.3: Solutions of Solids Dissolved in Water: How to Make Rock Candy
 5. 13.4: Solutions of Gases in Water: How Soda Pop Gets Its Fizz
 6. 13.5: Solution Concentration: Mass Percent
Learning Objectives

- To identify the different between temperature and heat
- To recognize the different scales used to measuring temperature

The concept of temperature may seem familiar to you, but many people confuse temperature with heat. **Temperature** is a measure of how hot or cold an object is relative to another object (its thermal energy content), whereas **heat** is the flow of thermal energy between objects with different temperatures. Temperature is a measure of the average kinetic energy of the particles in matter. In everyday usage, temperature indicates a measure of how hot or cold an object is. Temperature is an important parameter in chemistry. When a substance changes from solid to liquid, it is because there was an increase in the temperature of the material. Chemical reactions usually proceed faster if the temperature is increased. Many unstable materials (such as enzymes) will be viable longer at lower temperatures.

Three different scales are commonly used to measure temperature: Fahrenheit (expressed as °F), Celsius (°C), and...
Kelvin (K). Thermometers measure temperature by using materials that expand or contract when heated or cooled. Mercury or alcohol thermometers, for example, have a reservoir of liquid that expands when heated and contracts when cooled, so the liquid column lengthens or shortens as the temperature of the liquid changes.

Figure \(\PageIndex{2}\)\): Daniel Gabriel Fahrenheit (left), Anders Celsius (center), and Lord Kelvin (right)

The Fahrenheit Scale

The first thermometers were glass and contained alcohol, which expanded and contracted as the temperature changed. The German scientist, Daniel Gabriel Fahrenheit used mercury in the tube, an idea put forth by Ismael Boulliau. The Fahrenheit scale was first developed in 1724 and tinkered with for some time after that. The main problem with this scale is the arbitrary definitions of temperature. The freezing point of water was defined as \(32^\circ \text{F}\) and the
boiling point as \(212^\circ\text{F}\)). The Fahrenheit scale is typically not used for scientific purposes.

The Celsius Scale

The Celsius scale of the metric system is named after Swedish astronomer Anders Celsius (1701 - 1744). The Celsius scale sets the freezing point and boiling point of water at \(0^\circ\text{C}\) and \(100^\circ\text{C}\) respectively. The distance between those two points is divided into 100 equal intervals, each of which is one degree. Another term sometimes used for the Celsius scale is "centigrade" because there are 100 degrees between the freezing and boiling points of water on this scale. However, the preferred term is "Celsius".

The Kelvin Scale

The Kelvin temperature scale is named after Scottish physicist and mathematician Lord Kelvin (1824 - 1907). It is based on molecular motion, with the temperature of \(0 \text{ K}\), also known as absolute zero, being the point where all molecular motion ceases. The freezing point of water on the Kelvin scale is \(273.15 \text{ K}\), while the boiling point is \(373.15 \text{ K}\). Notice that there is no "degree" used in the temperature designation. Unlike the Fahrenheit and Celsius scales where temperatures are referred to as "degrees \(\circ\text{F}\)" or "degrees \(\circ\text{C}\)", we simply designated temperatures in the Kelvin scale as kelvins.

![Figure](image)

Figure:\ A Comparison of the Fahrenheit, Celsius, and Kelvin Temperature Scales. Because the difference between the freezing point of water and the boiling point of water is 100° on both the Celsius and Kelvin scales, the size of a degree Celsius (°C) and a Kelvin (K) are precisely the same. In contrast, both a degree Celsius and a Kelvin are 9/5 the size of a degree Fahrenheit (°F).

Converting between Scales

The Kelvin is the same size as the Celsius degree, so measurements are easily converted from one to the other. The freezing point of water is \(0^\circ\text{C} = 273.15 \text{ K}\); the boiling point of water is \(100^\circ\text{C} = 373.15 \text{ K}\). The Kelvin and Celsius scales are related as follows:

\[
T \text{(in } \circ\text{C}) + 273.15 = T \text{(in K)}
\]

\[T \text{ (in K)} - 273.15 = T \text{ (in °C)} \tag{3.10.2} \label{3.10.2} \]

Degrees on the Fahrenheit scale, however, are based on an English tradition of using 12 divisions, just as 1 ft = 12 in. The relationship between degrees Fahrenheit and degrees Celsius is as follows: where the coefficient for degrees Fahrenheit is exact. (Some calculators have a function that allows you to convert directly between °F and °C.) There is only one temperature for which the numerical value is the same on both the Fahrenheit and Celsius scales: −40°C = −40°F. The relationship between the scales are as follows:

\[°C = \frac{5}{9} \times (°F-32) \tag{3.10.3} \label{3.10.3} \]
\[°F = \frac{9}{5} \times (°C)+32 \tag{3.10.4} \label{3.10.4} \]

Example \(\PageIndex{1}\): Temperature Conversions

A student is ill with a temperature of 103.5°F. What is her temperature in °C and K?

SOLUTION

Converting from Fahrenheit to Celsius requires the use of Equation \ref{3.10.3}:

\[
\begin{align}
°C &= \frac{5}{9} \times (103.5°F - 32) \\
&= 39.7 \,°C
\end{align}
\]

Converting from Celsius to Kelvin requires the use of Equation \ref{3.10.1}:

\[
\begin{align}
K &= 39.7 \,°C + 273.15 \\
&= 312.9\,K
\end{align}
\]

Exercise \(\PageIndex{1}\))

Convert each temperature to °C and °F.

a. the temperature of the surface of the sun (5800 K)
b. the boiling point of gold (3080 K)
c. the boiling point of liquid nitrogen (77.36 K)

Answer (a)
5527 K, 9980 °F

Answer (b)
2807 K, 5084 °F

Answer (c)
-195.79 K, -320.42 °F

Summary

Three different scales are commonly used to measure temperature: Fahrenheit (expressed as °F), Celsius (°C), and Kelvin (K).
Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- Marisa Alviar-Agnew (Sacramento City College)
- Henry Agnew (UC Davis)