Skills to Develop

In this lecture you will learn the following

- Solid state structures of nickel-arsenide, alkyl lithium and alkyl aluminium compounds.

Structure and bonding

The slight differences that arise between organometallic compounds and binary hydrogen compounds are mainly due to the tendency of alkyl groups to avoid ionic bonding. The molecular structures of AlMe$_3$ and MeLi differ from AlH$_3$ and LiH. Even the more ionic MeK crystallizes in the nickel-arsenide structure rather than the rock-salt structure adopted by KCl.

Nickel-arsenide structure is typical of soft-cation, soft-anion combinations.

Electron deficient compounds such as AlMe$_3$ contain 3c-2e bonds analogous to the B—H—B bridges in diborane.

The Nickel-Arsenide, NiAs, Structure

MeLi in nonpolar solvents consists of tetrahedron of Li atoms with each face bridged by a methyl group. Similar to AlMe$_6$, the bonding in MeLi consists of a set of localized molecular orbitals. The symmetric combination of three Li 2s orbitals on each face of the Li$_4$ tetrahedron and one sp3 hybrid orbital from CH$_3$ gives an orbital that can accommodate a pair of electron to form a 4c-2e bond.
The lower energy of the C orbital compared with the Li orbitals indicates that the bonding pair of electrons will be associated primarily with the CH$_3$ group, thus supporting the carbanionic character of the molecule. Some analysis has indicated that about 90% ionic character for the Li-CH$_3$ interaction.

The interaction between an sp3 orbital from a methyl group and the three 2s orbitals of the Li atoms in a triangular face of Li$_4$(CH$_3$)$_4$ to form a totally symmetric 4c,2e bonding orbital. The next higher orbital is non-bonding and the uppermost is antibonding.

Me$_2$Be and Me$_2$Mg exist in a polymeric structure with two 3c,2e-bonding CH$_3$ bridges between each metal atom.

Contributors

http://nptel.ac.in/courses/104101006/6