skills to Develop

- Know the basics of the experiments involving the discoveries of the three subatomic particles
- Memorize relative charge values and amu masses of the three subatomic particles.
- Realize the location of the proton, electron, and neutron inside the atomic model.

Identifying and Locating the Subatomics

In 1897, the British physicist J. J. Thomson (1856–1940) proved that atoms were not the most basic form of matter. His experiments involved the use of cathode ray tubes (CRT). Under a vacuumed environment, these devices produce invisible rays that originate from a negative electrode (cathode) and continue to a positive electrode (anode). In these experiments, Thomson demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that cathode rays consist of charged particles. More importantly, by measuring the extent of the deflection of the cathode rays in magnetic or electric fields of various strengths, Thomson was able to calculate the mass-to-charge ratio of the particles. Because like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge; these particles are now called electrons. Most relevant to the field of chemistry, Thomson found that the mass-to-charge ratio of cathode rays is independent of the nature of the metal electrodes or the gas, which suggested that electrons were fundamental components of all atoms.

Video \(\PageIndex{1}\): An instructor explains nature of a cathode ray tube and the discovery of the electron.
During the 1910's, experiments with x-rays led to this useful conclusion: the magnitude of the positive charge in the nucleus of every atom of a particular element is the same. In other words, all atoms of the same element have the same number of protons. Furthermore, different elements have a different number of protons in their nuclei, so the number of protons in the nucleus of an atom is characteristic of a particular element. This discovery was so important to our understanding of atoms that the number of protons in the nucleus of an atom is called the atomic number. These experiments were performed by Ernest Rutherford. He is credited with defining a central location of the atom which has now been named the nucleus.

Figure 1: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection. Bottom: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus. Image used with permission (Public Domain).

Rutherford was aware of the protons were inside this region. One of Ernest Rutherford's colleagues, James Chadwick, performed and studied radioactive reactions of beryllium. Upon hitting a beryllium nucleus with alpha particles, a neutron particle was emitted. In 1932, James Chadwick announced the existence of a third subatomic particle, the neutron. This particle has a mass of 1 atomic mass unit, but does not have any charge. After this discovery, nuclear science and technology started immediately.

Figure 2: Elements, such as helium, depicted here, are made up of atoms. Atoms are made up of protons and neutrons located within the nucleus, with electrons in orbitals surrounding the nucleus.

Masses for the three subatomic particles can be expressed in amu (atomic mass units) or grams. For simplicity, we will use the amu unit for the three subatomics. Both neutrons and protons are assigned as having masses of 1 amu each. In contrast, the electron has a negligible mass of .0005 amu. This subatomic's mass is not represented in the decimal mass that is displayed on the periodic table. Only protons and neutrons contribute to an atom's mass value.
For atoms (neutral species), the number of electrons is equivalent to the number of protons. As a result, all atoms have an overall charge of zero. For discussion of ions (atoms that gain or lose electrons), look to the latter part of this chapter. Atoms that differ in neutron and mass values from the table are called isotopes. These particular species can be seen in the following section of the text.

Table 1 (PageIndex1): Properties of Subatomic Particles

<table>
<thead>
<tr>
<th>Subatomic particle</th>
<th>Symbol</th>
<th>Relative charge</th>
<th>Location</th>
<th>Amu mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>p</td>
<td>+1</td>
<td>inside the nucleus</td>
<td>1</td>
</tr>
<tr>
<td>Neutron</td>
<td>n</td>
<td>0</td>
<td>inside the nucleus</td>
<td>1</td>
</tr>
<tr>
<td>Electron</td>
<td>e(^-)</td>
<td>-1</td>
<td>outside the nucleus</td>
<td>0.0005 (~0)</td>
</tr>
</tbody>
</table>

Example (PageIndex1))

Which is true?

a. The nucleus contains protons and electrons.

b. The mass of an electron is included in the mass of the atom

c. For an atom, the number of protons = number of electrons.

SOLUTION

a. False, the nucleus contains the protons and the neutrons. Electrons are outside the core.

b. False, electrons do not contribute to the mass number of an atom.

c. True, all atoms are neutral and must have the same number of protons as electrons.

Key Takeaways

- There are three subatomic particles in most atoms.
- Different experiments helped to determine the location and charge of each subatomic particle.