Reactions such as the one in the previous example involve the dissociation of a molecule. Such reactions can be easily described in terms of the fraction of reactant molecules that actually dissociate to achieve equilibrium in a sample. This fraction is called the **degree of dissociation**. For the reaction in the previous example

\[A(g) \rightleftharpoons 2 B(g) \]

the degree of dissociation can be used to fill out an ICE table. If the reaction is started with \(n \) moles of \(A \), and \(\alpha \) is the fraction of \(A \) molecules that dissociate, the ICE table will look as follows.

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(2 , B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>(n)</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>(-\alpha n)</td>
<td>(+2n\alpha)</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>(n(1-\alpha))</td>
<td>(2n\alpha)</td>
</tr>
</tbody>
</table>

The mole fractions of \(A \) and \(B \) can then be expressed by

\[
\begin{align*}
\chi_A &= \frac{n(1-\alpha)}{n(1-\alpha)+2n\alpha} \\
&= \frac{1-\alpha}{1+\alpha} \\
\chi_B &= \frac{2\alpha}{1+\alpha}
\end{align*}
\]

Based on these mole fractions

\[
\begin{align*}
K_x &= \left(\frac{2\alpha}{1+\alpha} \right)^2 \left(\frac{1-\alpha}{1+\alpha} \right) \\
&= \frac{4\alpha^2}{1-\alpha^2}
\end{align*}
\]

And so \(K_p \), which can be expressed as

\[
K_p = K_x (p_{tot})^{\sum \nu_i}
\]

is given by

\[
K_p = \frac{4\alpha^2}{1-\alpha^2} (p_{tot})
\]

Example \(\PageIndex{1} \)

Based on the values given below, find the equilibrium constant at 25 °C and degree of dissociation for a system that is at a total pressure of 1.00 atm for the reaction

\[N_2O_4(g) \rightleftharpoons 2 \, NO_2(g) \]

<table>
<thead>
<tr>
<th>(\Delta G_f^o) (kJ/mol)</th>
<th>(N_2O_4(g))</th>
<th>(NO_2(g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.8</td>
<td>(nonumber)</td>
<td>51.3</td>
</tr>
</tbody>
</table>

Solution
First, the value of K_p can be determined from ΔG_{rxn}^o via an application of Hess’ Law.

\[
\begin{align*}
\Delta G_{rxn}^o &= 2 \left(51.3 \, kJ/mol \right) - 99.8 \,kJ/mol &= 2.8 \, kJ/mol
\end{align*}
\]

So, using the relationship between thermodynamics and equilibria

\[
\begin{align*}
\Delta G_f^o &= -RT \ln K_p \\
2800 \, kJ/mol &= -(8.314 \, J/(mol\,K) \left(298 \,K \right) \ln K_p \\
K_p &= 0.323 \, atm
\end{align*}
\]

The degree of dissociation can then be calculated from the ICE tables at the top of the page for the dissociation of $N_2O_4(g)$:

\[
\begin{align*}
K_p &= \dfrac{4 \alpha^2}{1-\alpha^2} (p_{tot}) \\
0.323 \, atm &= \dfrac{4 \alpha^2}{1-\alpha^2} (1.00 \, atm)
\end{align*}
\]

Solving for α,

\[
\alpha = 0.273 \nonumber
\]

Note: since α represents the fraction of N_2O_4 molecules dissociated, it must be a positive number between 0 and 1.

Example $(PageIndex{2})$

Consider the gas-phase reaction

\[
A + 2B \rightleftharpoons 2C
\]

A reaction vessel is initially filled with 1.00 mol of A and 2.00 mol of B. At equilibrium, the vessel contains 0.60 mol C and a total pressure of 0.890 atm at 1350 K.

1. How many mol of A and B are present at equilibrium?
2. What is the mole fraction of A, B, and C at equilibrium?
3. Find values for (K_x), (K_p), and (ΔG_{rxn}^o).

Solution:

Let’s build an ICE table!

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>2 B</th>
<th>2 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1.00 mol</td>
<td>2.00 mol</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-x</td>
<td>-2x</td>
<td>+2x</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>1.00 mol - x</td>
<td>2.00 mol - 2x</td>
<td>2x = 0.60 mol</td>
</tr>
</tbody>
</table>

From the equilibrium measurement of the number of moles of C, $x = 0.30$ mol. So at equilibrium,
The total number of moles at equilibrium is 2.70 mol. From these data, the mole fractions can be determined.

\[
\begin{align*}
\chi_A &= \frac{0.70\,\text{mol}}{2.70\,\text{mol}} = 0.259 \\
\chi_B &= \frac{1.40\,\text{mol}}{2.70\,\text{mol}} = 0.519 \\
\chi_C &= \frac{0.60\,\text{mol}}{2.70\,\text{mol}} = 0.222
\end{align*}
\]

So \(K_x\) is given by

\[
K_x = \frac{(0.222)^2}{(0.259)(0.519)^2} = 0.7064
\]

And \(K_p\) is given by Equation \ref{oddEq}, so

\[
K_p = 0.7604(0.890 \,\text{atm})^{-1} = 0.792,\,\text{atm}^{-1}
\]

The thermodynamic equilibrium constant is unitless, of course, since the pressures are all divided by 1 atm. So the actual value of \(K_p\) is 0.794. This value can be used to calculate \(\Delta G_{\text{rxn}}^o\) using

\[
\Delta G_{\text{rxn}}^o = -RT \ln K_p
\]

so

\[
\begin{align*}
\Delta G_{\text{rxn}}^o &= - (8.314 \,\text{J/(mol\,K)})(1350 \,\text{K}) \ln (0.792) \\
&= 2590 \,\text{J/mol}
\end{align*}
\]

Contributors

- **Patrick E. Fleming** (Department of Chemistry and Biochemistry; California State University, East Bay)