The partial molar volume of compound A in a mixture of A and B can be defined as

\[V_A = \left(\frac{\partial V}{\partial n_A} \right)_{p,T,n_B} \]

Using this definition, a change in volume for the mixture can be described using the total differential of \(V \):

\[dV = \left(\frac{\partial V}{\partial n_A} \right)_{p,T,n_B} dn_A + \left(\frac{\partial V}{\partial n_B} \right)_{p,T,n_A} dn_B \]

or

\[dV = V_a \ dn_A + V_b \ dn_B \]

and integration yields

\[V = \int_0^{n_A} V_a \ dn_A + \int_0^{n_B} V_b \ dn_B \]

This result is important as it demonstrates an important quality of partial molar quantities. Specifically, if \(\xi_i \) represents the partial molar property \(X \) for component i of a mixture, the total property \(X \) for the mixture is given by

\[X = \sum_i \xi_i n_i \]

It should be noted that while the volume of a substance is never negative, the partial molar volume can be. An example of this appears in the dissolution of a strong electrolyte in water. Because the water molecules in the solvation sphere of the ions are physically closer together than they are in bulk pure water, there is a volume decrease when the electrolyte dissolves. This is easily observable at high concentrations where a larger fraction of the water in the sample is tied up in solvation of the ions.

Contributors

- Patrick E. Fleming (Department of Chemistry and Biochemistry; California State University, East Bay)