Assignment of structures is a central problem which NMR is well suit to address. Explains how both 13C NMR spectra and low and high resolution proton NMR spectra can be used to help to work out the structures of organic compounds.

- **13C NMR Background**
 - Carbon-13 NMR
- **Interpreting C-13 NMR Spectra**
- **Symmetry in NMR**
- **13C NMR and Geometry**
- **13C NMR and Electronics**
- **More About Electronics**
- **Proton NMR Background**
- **Chemical Shift in 1H NMR**
- **Low Resolution Proton NMR Spectra**
- **High Resolution Proton NMR Spectra**
- **Integration in Proton NMR**
- **Multiplicity**
- **More About Multiplicity**
- **Determine Structure with Combined Spectra**
- **More Practice with NMR Spectroscopy**

- **Chapter 5: Structure Determination II: Nuclear Magnetic Resonance**
 - **Section 5.1: The origin of the NMR signal**
 - **Section 5.2: Chemical equivalence**
 - **Section 5.3: The NMR experiment**
 - **Section 5.4: The basis for differences in chemical shift**
 - **Section 5.5: Spin-spin coupling**
 - **Section 5.6: 13C-NMR spectroscopy**
 - **Section 5.7: Determining unknown structures**
 - **Section 5.8: NMR of phosphorylated molecules**
 - **Section 5.P: Problems for Chapter 5**

NMR Appendix. Useful Charts for NMR identification