Most aldehydes and ketones react with 2°-amines to give products known as **enamines**. It should be noted that, like acetal formation, these are acid-catalyzed reversible reactions in which water is lost. Consequently, enamines are easily converted back to their carbonyl precursors by acid-catalyzed hydrolysis.

Mechanism

1) Nucleophilic attack

2) Proton transfer

3) Protonation of OH
4) Removal of water

5) Deprotonation

Reversibility of Enamines

Example
Problems

1) Please draw the products for the following reactions.

\[\text{products} \]

2) Please give the structure of the reactant needed to produce the following product

\[\text{reactant} \]

Answers

1)
Contributors

- Prof. Steven Farmer (Sonoma State University)