1. **Chapter 1: Introduction: Matter and Measurement**
 2. 1.1: The Study of Chemistry
 3. 1.2: Classification of Matter
 4. 1.3: Properties of Matter
 5. 1.4: Units of Measurement
 6. 1.5: Uncertainty in Measurement
 7. 1.6: Dimensional Analysis

8. 1.E: Matter and Measurement (Exercises)
9. 1.S: Matter and Measurement (Summary)

• 2

1. **Chapter 2: Atoms, Molecules, and Ions**
 2. 2.1: The Atomic Theory of Matter
 3. 2.2: The Discovery of Atomic Structure
 4. 2.3: The Modern View of Atomic Structure
 5. 2.4: Atomic Mass
 6. 2.5: The Periodic Table
 7. 2.6: Molecules and Molecular Compounds
 8. 2.7: Ions and Ionic Compounds
 9. 2.8: Naming Inorganic Compounds
 10. 2.9: Some Simple Organic Compounds

11. 2.E: Atoms, Molecules, and Ions (Exercises)
12. 2.S: Atoms, Molecules, and Ions (Summary)

• 3

1. **Chapter 3: Stoichiometry: Chemical Formulas and Equations**
 2. 3.1: Chemical Equations
 3. 3.2: Some Simple Patterns of Chemical Reactivity
 4. 3.3: Formula Masses
 5. 3.4: Avogadro's Number and the Mole
 6. 3.5: Empirical Formulas from Analysis
 7. 3.6: Quantitative Information from Balanced Equations
 8. 3.7: Limiting Reactants
 9. 3.E: Stoichiometry (Exercises)
10. Chapter 4: Reactions in Aqueous Solution
 2. 4.1: General Properties of Aqueous Solutions
 3. 4.2: Precipitation Reactions
 4. 4.3: Acid-Base Reactions
 5. 4.4: Oxidation-Reduction Reactions
 6. 4.5: Concentration of Solutions
7. 4.6: Solution Stoichiometry and Chemical Analysis
8. 4.E: Reactions in Aqueous Solution (Exercises)
9. 4.S: Reactions in Aqueous Solution (Summary)

• 5
1. Chapter 5: Thermochemistry
 2. 5.1: The Nature of Energy
 3. 5.2: The First Law of Thermodynamics
 4. 5.3: Enthalpy
 5. 5.4: Enthalpy of Reaction
 6. 5.5: Calorimetry
 7. 5.6: Hess’s Law
 8. 5.7: Enthalpies of Formation
 9. 5.8: Foods and Fuels
10. 5.E: Thermochemistry (Exercises)
11. 5.S: Thermochemistry (Summary)

• 6
1. Chapter 6: Electronic Structure of Atoms
 2. 6.1: The Wave Nature of Light
 3. 6.2: Quantized Energy and Photons
 4. 6.3: Line Spectra and the Bohr Model
 5. 6.4: The Wave Behavior of Matter
 6. 6.5: Quantum Mechanics and Atomic Orbitals
 7. 6.6: 3D Representation of Orbitals
 8. 6.7: Many-Electron Atoms
 9. 6.8: Electron Configurations
10. 6.9: Electron Configurations and the Periodic Table
11. 6.E: Electronic Structure of Atoms (Exercises)
12. 6.S: Electronic Structure of Atoms (Summary)
Chapter 7: Periodic Properties of the Elements

1. Chapter 7: Periodic Properties of the Elements
2. 7.1: Development of the Periodic Table
3. 7.2: Effective Nuclear Charge
4. 7.3: Sizes of Atoms and Ions
5. 7.4: Ionization Energy
6. 7.5: Electron Affinities
7. 7.6: Metals, Nonmetals, and Metalloids
8. 7.7: Group Trends for the Active Metals
9. 7.8: Group Trends for Selected Nonmetals
10. 7.E: Periodic Properties of the Elements (Exercises)
11. 7.S: Periodic Properties of the Elements (Summary)

Chapter 8: Basic Concepts of Chemical Bonding

1. Chapter 8: Basic Concepts of Chemical Bonding
2. 8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule
3. 8.2: Ionic Bonding
4. 8.3: Covalent Bonding
5. 8.4: Bond Polarity and Electronegativity
6. 8.5: Drawing Lewis Structures
7. 8.6: Resonance Structures
8. 8.7: Exceptions to the Octet Rule
9. 8.8: Strength of Covalent Bonds
10. 8.E: Basic Concepts of Chemical Bonding (Exercises)
11. 8.S: Basic Concepts of Chemical Bonding (Summary)

Chapter 9: Molecular Geometry and Bonding Theories

1. Chapter 9: Molecular Geometry and Bonding Theories
2. 9.1: Molecular Shapes
3. 9.2: The VSEPR Model
4. 9.3: Molecular Shape and Molecular Polarity
5. 9.4: Covalent Bonding and Orbital Overlap
6. 9.5: Hybrid Orbitals
7. 9.6: Multiple Bonds
8. 9.7: Molecular Orbitals
9. 9.8: Second-Row Diatomic Molecules
10. 9.E: Exercises
11. 9.S: Molecular Geometry and Bonding Theories (Summary)
Chapter 10: Gases

1. Characteristics of Gases
2. Pressure
3. The Gas Laws
4. The Ideal Gas Equation
5. Further Applications of the Ideal-Gas Equations
6. Gas Mixtures and Partial Pressures
7. Kinetic-Molecular Theory
8. Molecular Effusion and Diffusion
9. Real Gases - Deviations from Ideal Behavior
10. Exercises
11. Gases (Summary)

Chapter 11: Liquids and Intermolecular Forces

1. A Molecular Comparison of Gases, Liquids, and Solids
2. Intermolecular Forces
3. Some Properties of Liquids
4. Phase Changes
5. Vapor Pressure
6. Phase Diagrams
7. Structure of Solids
8. Bonding in Solids
9. Liquids and Intermolecular Forces (Exercises)
10. Liquids and Intermolecular Forces (Summary)

Chapter 12: Solids and Modern Materials

1. Classes of Materials
2. Materials for Structure
3. Materials for Medicine
4. Materials for Electronics
5. Materials for Optics
6. Materials for Nanotechnology
7. Solids and Modern Materials (Exercises)
8. Solids and Modern Materials (Summary)
1. Chapter 13: Properties of Solutions
 2. 13.1: The Solution Process
 3. 13.2: Saturated Solutions and Solubility
 4. 13.3: Factors Affecting Solubility
 5. 13.4: Ways of Expressing Concentration
 6. 13.5: Colligative Properties
 7. 13.6: Colloids
 8. 13.E: Properties of Solutions (Exercises)
 9. 13.S: Properties of Solutions (Summary)

• 14

1. Chapter 14: Chemical Kinetics
 2. 14.1: Factors that Affect Reaction Rates
 3. 14.2: Reaction Rates
 4. 14.3: Concentration and Rates (Differential Rate Laws)
 5. 14.4: The Change of Concentration with Time (Integrated Rate Laws)
 6. 14.5: Temperature and Rate
 7. 14.6: Reaction Mechanisms
 8. 14.7: Catalysis
 9. 14.E: Exercises
10. 14.S: Chemical Kinetics (Summary)

• 15

1. Chapter 15: Chemical Equilibrium
 2. 15.1: The Concept of Equilibrium
 3. 15.2: The Equilibrium Constant
 4. 15.3: Interpreting & Working with Equilibrium Constants
 5. 15.4: Heterogeneous Equilibria
 6. 15.5: Calculating Equilibrium Constants
 7. 15.6: Applications of Equilibrium Constants
 8. 15.7: Le Châtelier’s Principle
 9. 15.E: Exercises
10. 15.S: Chemical Equilibrium (Summary)

• 16

1. Chapter 16: Acid–Base Equilibria
 2. 16.1: Acids and Bases: A Brief Review
 3. 16.2: Brønsted–Lowry Acids and Bases
 4. 16.3: The Autoionization of Water
5. 16.4: The pH Scale
6. 16.5: Strong Acids and Bases
7. 16.6: Weak Acids
8. 16.7: Weak Bases
9. 16.8: Relationship Between KaKa and KbKb
10. 16.9: Acid-Base Properties of Salt Solutions
11. 16.10: Acid-Base Behavior and Chemical Structure
12. 16.11: Lewis Acids and Bases
13. 16.E: Acid–Base Equilibria (Exercises)
14. 16.S: Acid–Base Equilibria (Summary)

• 17

1. Chapter 17: Additional Aspects of Aqueous Equilibria
 2. 17.1: The Common-Ion Effect
 3. 17.2: Buffered Solutions
 4. 17.3: Acid-Base Titrations
 5. 17.4: Solubility Equilibria
 6. 17.5: Factors that Affect Solubility
 7. 17.6: Precipitation and Separation of Ions
 8. 17.7: Qualitative Analysis for Metallic Elements
9. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
10. 17.S: Additional Aspects of Aqueous Equilibria (Summary)

• 18

1. Chapter 18: Chemistry of the Environment
 2. 18.1: Earth's Atmosphere
 3. 18.2: Outer Regions of the Atmosphere
 4. 18.3: Ozone in the Upper Atmosphere
 5. 18.4: Chemistry of the Troposphere
 6. 18.5: The World Ocean
 7. 18.6: Fresh Water
 8. 18.7: Green Chemistry
9. 18.E: Chemistry of the Environment (Exercises)

• 19

1. Chapter 19: Chemical Thermodynamics
 2. 19.1: Spontaneous Processes
 3. 19.2: Entropy and the Second Law of Thermodynamics
 4. 19.3: The Molecular Interpretation of Entropy
5. **19.4: Entropy Changes in Chemical Reactions**
6. **19.5: Gibbs Free Energy**
7. **19.6: Free Energy and Temperature**
8. **19.7: Free Energy and the Equilibrium Constant**
9. **19.E: Chemical Thermodynamics (Exercises)**

• 20

1. **Chapter 20: Electrochemistry**
2. **20.1: Oxidation States & Redox Reactions**
3. **20.2: Balanced Oxidation-Reduction Equations**
4. **20.3: Voltaic Cells**
5. **20.4: Cell Potential Under Standard Conditions**
6. **20.5: Gibbs Energy and Redox Reactions**
7. **20.6: Cell Potential Under Nonstandard Conditions**
8. **20.7: Batteries and Fuel Cells**
9. **20.8: Corrosion**
10. **20.9: Electrolysis**
11. **20.E: Electrochemistry (Exercises)**

• 21

1. **Chapter 21: Nuclear Chemistry**
2. **21.1: Radioactivity**
3. **21.2: Patterns of Nuclear Stability**
4. **21.3: Nuclear Transmutations**
5. **21.4: Rates of Radioactive Decay**
6. **21.6: Energy Changes in Nuclear Reactions**
7. **21.7: Nuclear Fission**
8. **21.8: Nuclear Fusion**
9. **21.9: Biological Effects of Radiation**
10. **21.E: Exercises**
11. **21.S: Nuclear Chemistry (Summary)**

• 22

1. **Chapter 22: Chemistry of the Nonmetals**
2. **22.1: General Concepts: Periodic Trends and Reactions**
3. **22.2: Hydrogen**
4. **22.3: Group 18: Nobel Gases**
5. **22.4: Group 17: The Halogens**
6. **22.5: Oxygen**
7. **22.6: The Other Group 16 Elements: S, Se, Te, and Po**
8. **22.7: Nitrogen**
9. **22.8: The Other Group 15 Elements: P, As, Sb, and Bi**
10. **22.9: Carbon**
11. **22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb**
12. **22.11: Boron**
13. **22.E: Chemistry of the Nonmetals (Exercises)**
14. **22.S: Chemistry of the Nonmetals (Summary)**

• **23**

1. **Chapter 23: Metals and Metallurgy**
2. **23.1: Occurrence and Distribution of Metals**
 3. **23.2: Pyrometallurgy**
 4. **23.3: Hydrometallurgy**
 5. **23.4: Electrometallurgy**
 6. **23.5: Metallic Bonding**
 7. **23.6: Alloys**
8. **23.7: Transition Metals**
9. **23.8: Chemistry of Selected Transition Metals**

• **24**

1. **Chapter 24: Chemistry of Coordination Chemistry**
2. **24.1: Metal Complexes**
3. **24.2: Ligands with more than one Donor Atom**
4. **24.3: Nomenclature of Coordination Chemistry**
5. **24.4: Isomerization**
6. **24.5: Color and Magnetism**
7. **24.6: Crystal Field Theory**
8. **24.E: Chemistry of Coordination Chemistry (Exercises)**

• **25**

1. **Chapter 25: Chemistry of Life: Organic and Biological Chemistry**
2. **25.1: General Characteristics of Organic Molecules**
3. **25.2: Introduction to Hydrocarbons**
4. **25.3: Alkanes**
5. **25.4: Unsaturated Hydrocarbons**
6. **25.5: Functional Groups**
7. **25.6: Compounds with a Carbonyl Group**
These is a summary of key concepts of the chapter in the Textmap created for "Chemistry: The Central Science" by Brown et al.
14.1: Factors that Affect Reaction Rates

chemical kinetics – area of chemistry dealing with speeds/rates of reactions

- rates of reactions affected by four factors
 1. concentrations of reactants
 2. temperature at which reaction occurs
 3. presence of a catalyst
 4. surface area of solid or liquid reactants and/or catalysts

14.2: Reaction Rates

- **reaction rate** – speed of a chemical reaction

\[
\text{average rate} = \frac{\text{change #moles B}}{\text{change in time}} = \frac{\Delta \text{moles B}}{\Delta t} \text{ if } A \to B
\]

\[
\Delta \text{moles B} = \text{moles B at final time} - \text{moles B at initial time}
\]

\[
\text{average rate} = -\frac{\Delta \text{moles A}}{\Delta t} \text{ if } A \to B
\]

14.2.1 Rates in Terms of Concentrations

- rate calculated in units of M/s
- brackets around a substance indicate the concentration
- **instantaneous rate** – rate at a particular time
- instantaneous rate obtained from the straight line tangent that touches the curve at a specific point
- slopes give instantaneous rates
- instantaneous rate also referred to as the rate

14.2.2 Reaction Rates and Stoichiometry

- for the irreversible reaction \(aA + bB \to cC + dD \)

\[
\text{rate} = -\frac{1}{a} \frac{\Delta [A]}{\Delta t} = -\frac{1}{b} \frac{\Delta [B]}{\Delta t} = \frac{1}{c} \frac{\Delta [C]}{\Delta t} = \frac{1}{d} \frac{\Delta [D]}{\Delta t}
\]

14.3: Concentration and Rate

- equation used only if C and D only substances formed
- Rate = \(k[A][B] \)
- **Rate law** – expression that shows that rate depends on concentrations of reactants
- \(k = \text{rate constant} \)
14.3.1 Reaction Order

- Rate = \(k[\text{reactant 1}]^m[\text{reactant 2}]^n \)
- \(m, n \) are called reaction orders
- \(m+n \), overall reaction order
- reaction orders do not have to correspond with coefficients in balanced equation
- values of reaction order determined experimentally
- reaction order can be fractional or negative

14.3.2 Units of Rates Constants

- units of rate constant depend on overall reaction order of rate law
- for reaction of second order overall
- units of rate = (units of rate constant)(units of concentration)^2
- units of rate constant = M^{-1}s^{-1}

14.3.3 Using Initial Rates to Determine Rate Laws

- zero order – no change in rate when concentration changed
- first order – change in concentration gives proportional changes in rate
- second order – change in concentration changes rate by the square of the concentration change, such as \(2^2 \) or \(3^2 \), etc…
- rate constant does not depend on concentration

14.4: The Change of Concentration with Time

- rate laws can be converted into equations that give concentrations of reactants or products

14.4.1 First-Order Reactions

\[
\text{rate} = -\frac{\Delta [A]}{\Delta t} = k[A] \\

\text{and in integral form:}
\[
\ln[A]_t - \ln[A]_0 = -kt
\]

or

\[
\ln\left[\frac{[A]_t}{[A]_0}\right] = -kt
\]

\[
\ln[A]_t = -kt + \ln[A]_0
\]

- corresponds to a straight line with \(y = mx + b \)
- equations used to determine:
1. concentration of reactant remaining at any time
2. time required for given fraction of sample to react
3. time required for reactant concentration to reach a certain level

14.3.2 Half-Life

- half-life of first order reaction
 \[t_{\frac{1}{2}} = -\frac{\ln\frac{1}{2}}{k} = \frac{0.693}{k} \]
- half-life – time required for concentration of reactant to drop to one-half of initial value
- \((t_{\frac{1}{2}}) \) of first order independent of initial concentrations
- half-life same at any given time of reaction
- in first order reaction – concentrations of reactant decreases by \(\frac{1}{2} \) in each series of regularly spaced time intervals

14.3.3 Second-Order Reactions

- rate depends on reactant concentration raised to second power or concentrations of two different reactants each raised to first power
 \[\text{Rate} = k[A]^2 \]
 \[\frac{1}{[A]_t} = kt + \frac{1}{[A]_0} \]
 \[\text{half life} = t_{\frac{1}{2}} = \frac{1}{k[A]_0} \]
- half life dependent on initial concentration of reactant

14.5: Temperature and Rate

- rate constant must increase with increasing temperature, thus increasing the rate of reaction

14.5.1 The Collision Model

- collision model – molecules must collide to react
- greater frequency of collisions the greater the reaction rate
- for most reactions only a small fraction of collisions leads to a reaction

14.5.2 Activation Energy

- Svante August Arrhenius
- Molecules must have a minimum amount of energy to react
- Energy comes from kinetic energy of collisions
- Kinetic energy used to break bonds
- Activation energy, \(E_a \) – minimum energy required to initiate a chemical reaction
• Activated complex or transition state – atoms at the top of the energy barrier
• Rate depends on temperature and \(E_a\)
• Lower \(E_a\) means faster reaction
• Reactions occur when collisions between molecules occur with enough energy and proper orientation

14.5.3 The Arrhenius Equation

• reaction rate data:
 • the Arrhenius Equation:

\[
\text{\(k = A e^{\frac{-E_a}{RT}} \)}\]

\(k\) = rate constant, \(E_a\) = activation energy, \(R\) = gas constant (8.314 J/(mol K)), \(T\) = absolute temperature, \(A\) = frequency factor

• \(A\) relates to frequency of collisions, favorable orientations

\[
\ln k = -\frac{E_a}{RT} + \ln A
\]

• the \(\ln k\) vs. \(1/T\) graph (also known as an Arrhenius plot) has a slope \(-E_a/R\) and the y-intercept \(\ln A\)
• for two temperatures:

\[
\ln \frac{k_1}{k_2} = \frac{E_a}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)
\]

• used to calculate rate constant, \(k_1\) and \(T_1\)

14.6: Reaction Mechanisms

• reaction mechanism – process by which a reaction occurs

14.6.1 Elementary Steps

• elementary steps – each step in a reaction
• molecularity – if only one molecule involved in step
• unimolecular – if only one molecule involved in step
• bimolecular – elementary step involving collision of two reactant molecules
• termolecular – elementary step involving simultaneous collision of three molecules
• elementary steps in multi-step mechanism must always add to give chemical equation of overall process
• intermediate – product formed in one step and consumed in a later step

14.6.2 Rate Laws of Elementary Steps

• if reaction is known to be an elementary step then the rate law is known
• rate of unimolecular step is first order (Rate = \(k[A]\))
• rate of bimolecular steps is second order (Rate = \(k[A][B]\))
• first order in [A] and [B]
• if double [A] than number of collisions of A and B will double

14.6.3 Rate Laws of Multi-step Mechanisms
• rate-determining step – slowest elementary step
• determines rate law of overall reaction

14.6.4 Mechanisms with an Initial First Step
• intermediates usually unstable, low and unknown concentrations
• whenever a fast step precedes a slow one, solve for concentration of intermediate by assuming that equilibrium is established in fast step

14.7: Catalysis
• catalyst – substance that changes speed of chemical reaction without undergoing a permanent chemical change

14.7.1 Homogeneous Catalysis
• homogeneous catalyst – catalyst that is present in same phase as reacting molecule
• catalysts alter E_a or A
• generally catalysts lowers overall E_a for chemical reaction
• catalysts provides a different mechanism for reaction

14.7.2 Heterogeneous Catalysis
• exists in different phase from reactants
• initial step in heterogeneous catalyst is adsorption
• adsorption – binding of molecules to surface
• adsorption occurs because ions/atoms at surface of solid extremely reactive

14.7.3 Enzymes
• biological catalysts
• large protein molecules with molecular weights 10,000 – 1 million amu
• catalase – enzyme in blood and liver that decomposes hydrogen peroxide into water and oxygen
• substrates – substances that undergo reaction at the active site
• lock-and-key model – substrate molecules bind specifically to the active site
• enzyme-substrate complex – combination of enzyme and substrate
• binding between enzyme and substrate involves intermolecular forces (dipole-dipole, hydrogen bonding, and London dispersion forces)
• product from reaction leaves enzyme allowing for another substrate to enter enzyme
• enzyme inhibitors – molecules that bind strongly to enzymes
• **turnover number** – number of catalyzed reactions occurring at a particular active site
• large turnover numbers = low activation energies