Chemistry: The Central Science
by Brown, LeMay, Busten, Murphy, and Woodward

1. Chapter 1: Introduction: Matter and Measurement
 1.1: The Study of Chemistry
 1.2: Classification of Matter
 1.3: Properties of Matter
 1.4: Units of Measurement
 1.5: Uncertainty in Measurement
 1.6: Dimensional Analysis
2. 1.E: Matter and Measurement (Exercises)
3. 1.S: Matter and Measurement (Summary)

2. Chapter 2: Atoms, Molecules, and Ions
 2.1: The Atomic Theory of Matter
 2.2: The Discovery of Atomic Structure
 2.3: The Modern View of Atomic Structure
 2.4: Atomic Mass
 2.5: The Periodic Table
 2.6: Molecules and Molecular Compounds
 2.7: Ions and Ionic Compounds
 2.8: Naming Inorganic Compounds
 2.9: Some Simple Organic Compounds
 2.E: Atoms, Molecules, and Ions (Exercises)
 2.S: Atoms, Molecules, and Ions (Summary)

3. Chapter 3: Stoichiometry: Chemical Formulas and Equations
 3.1: Chemical Equations
 3.2: Some Simple Patterns of Chemical Reactivity
 3.3: Formula Masses
 3.4: Avogadro's Number and the Mole
 3.5: Empirical Formulas from Analysis
 3.6: Quantitative Information from Balanced Equations
 3.7: Limiting Reactants
 3.E: Stoichiometry (Exercises)
10. **3.S: Stoichiometry (Summary)**

 • 4

1. **Chapter 4: Reactions in Aqueous Solution**
2. **4.1: General Properties of Aqueous Solutions**
3. **4.2: Precipitation Reactions**
4. **4.3: Acid-Base Reactions**
5. **4.4: Oxidation-Reduction Reactions**
6. **4.5: Concentration of Solutions**
7. **4.6: Solution Stoichiometry and Chemical Analysis**
8. **4.E: Reactions in Aqueous Solution (Exercises)**

 • 5

1. **Chapter 5: Thermochemistry**
2. **5.1: The Nature of Energy**
3. **5.2: The First Law of Thermodynamics**
4. **5.3: Enthalpy**
5. **5.4: Enthalpy of Reaction**
6. **5.5: Calorimetry**
7. **5.6: Hess’s Law**
8. **5.7: Enthalpies of Formation**
9. **5.8: Foods and Fuels**
10. **5.E: Thermochemistry (Exercises)**
11. **5.S: Thermochemistry (Summary)**

 • 6

1. **Chapter 6: Electronic Structure of Atoms**
2. **6.1: The Wave Nature of Light**
3. **6.2: Quantized Energy and Photons**
4. **6.3: Line Spectra and the Bohr Model**
5. **6.4: The Wave Behavior of Matter**
6. **6.5: Quantum Mechanics and Atomic Orbitals**
7. **6.6: 3D Representation of Orbitals**
8. **6.7: Many-Electron Atoms**
9. **6.8: Electron Configurations**
10. **6.9: Electron Configurations and the Periodic Table**
Chapter 7: Periodic Properties of the Elements

7.1: Development of the Periodic Table
7.2: Effective Nuclear Charge
7.3: Sizes of Atoms and Ions
7.4: Ionization Energy
7.5: Electron Affinities
7.6: Metals, Nonmetals, and Metalloids
7.7: Group Trends for the Active Metals
7.8: Group Trends for Selected Nonmetals
7.9: Periodic Properties of the Elements (Exercises)
7.10: Periodic Properties of the Elements (Summary)

Chapter 8: Basic Concepts of Chemical Bonding

8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule
8.2: Ionic Bonding
8.3: Covalent Bonding
8.4: Bond Polarity and Electronegativity
8.5: Drawing Lewis Structures
8.6: Resonance Structures
8.7: Exceptions to the Octet Rule
8.8: Strength of Covalent Bonds
8.9: Basic Concepts of Chemical Bonding (Exercises)
8.10: Basic Concepts of Chemical Bonding (Summary)

Chapter 9: Molecular Geometry and Bonding Theories

9.1: Molecular Shapes
9.2: The VSEPR Model
9.3: Molecular Shape and Molecular Polarity
9.4: Covalent Bonding and Orbital Overlap
9.5: Hybrid Orbitals
9.6: Multiple Bonds
9.7: Molecular Orbitals
9.8: Second-Row Diatomic Molecules
9.9: Second-Row Diatomic Molecules (Exercises)
9.10: Second-Row Diatomic Molecules (Summary)
10
1. Chapter 10: Gases
 2. 10.1: Characteristics of Gases
 3. 10.2: Pressure
 4. 10.3: The Gas Laws
 5. 10.4: The Ideal Gas Equation
 6. 10.5: Further Applications of the Ideal-Gas Equations
 7. 10.6: Gas Mixtures and Partial Pressures
 8. 10.7: Kinetic-Molecular Theory
 9. 10.8: Molecular Effusion and Diffusion
 10. 10.9: Real Gases - Deviations from Ideal Behavior
 11. 10.E: Exercises
 12. 10.S: Gases (Summary)

11
1. Chapter 11: Liquids and Intermolecular Forces
 2. 11.1: A Molecular Comparison of Gases, Liquids, and Solids
 3. 11.2: Intermolecular Forces
 4. 11.3: Some Properties of Liquids
 5. 11.4: Phase Changes
 6. 11.5: Vapor Pressure
 7. 11.6: Phase Diagrams
 8. 11.7: Structure of Solids
 9. 11.8: Bonding in Solids
 10. 11.E: Liquids and Intermolecular Forces (Exercises)
 11. 11.S: Liquids and Intermolecular Forces (Summary)

12
1. Chapter 12: Solids and Modern Materials
 2. 12.1: Classes of Materials
 3. 12.2: Materials for Structure
 4. 12.3: Materials for Medicine
 5. 12.4: Materials for Electronics
 6. 12.5: Materials for Optics
 7. 12.6: Materials for Nanotechnology
 8. 12.E: Solids and Modern Materials (Exercises)

13
1. Chapter 13: Properties of Solutions
 2. 13.1: The Solution Process
 3. 13.2: Saturated Solutions and Solubility
 4. 13.3: Factors Affecting Solubility
 5. 13.4: Ways of Expressing Concentration
 6. 13.5: Colligative Properties
 7. 13.6: Colloids
 8. 13.8: Properties of Solutions (Exercises)
 9. 13.9: Properties of Solutions (Summary)

• 14

1. Chapter 14: Chemical Kinetics
 2. 14.1: Factors that Affect Reaction Rates
 3. 14.2: Reaction Rates
 4. 14.3: Concentration and Rates (Differential Rate Laws)
 5. 14.4: The Change of Concentration with Time (Integrated Rate Laws)
 6. 14.5: Temperature and Rate
 7. 14.6: Reaction Mechanisms
 8. 14.7: Catalysis
 9. 14.8: Exercises
 10. 14.9: Chemical Kinetics (Summary)

• 15

1. Chapter 15: Chemical Equilibrium
 2. 15.1: The Concept of Equilibrium
 3. 15.2: The Equilibrium Constant
 4. 15.3: Interpreting & Working with Equilibrium Constants
 5. 15.4: Heterogeneous Equilibria
 6. 15.5: Calculating Equilibrium Constants
 7. 15.6: Applications of Equilibrium Constants
 8. 15.7: Le Châtelier’s Principle
 9. 15.8: Exercises
 10. 15.9: Chemical Equilibrium (Summary)

• 16

1. Chapter 16: Acid–Base Equilibria
 2. 16.1: Acids and Bases: A Brief Review
 3. 16.2: Brønsted–Lowry Acids and Bases
 4. 16.3: The Autoionization of Water
5. 16.4: The pH Scale
6. 16.5: Strong Acids and Bases
7. 16.6: Weak Acids
8. 16.7: Weak Bases
9. 16.8: Relationship Between Ka and Kb
10. 16.9: Acid-Base Properties of Salt Solutions
11. 16.10: Acid-Base Behavior and Chemical Structure
12. 16.11: Lewis Acids and Bases
13. 16.E: Acid–Base Equilibria (Exercises)
14. 16.S: Acid–Base Equilibria (Summary)

• 17
1. Chapter 17: Additional Aspects of Aqueous Equilibria
2. 17.1: The Common-Ion Effect
3. 17.2: Buffered Solutions
4. 17.3: Acid-Base Titrations
5. 17.4: Solubility Equilibria
6. 17.5: Factors that Affect Solubility
7. 17.6: Precipitation and Separation of Ions
8. 17.7: Qualitative Analysis for Metallic Elements
9. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
10. 17.S: Additional Aspects of Aqueous Equilibria (Summary)

• 18
1. Chapter 18: Chemistry of the Environment
2. 18.1: Earth's Atmosphere
3. 18.2: Outer Regions of the Atmosphere
4. 18.3: Ozone in the Upper Atmosphere
5. 18.4: Chemistry of the Troposphere
6. 18.5: The World Ocean
7. 18.6: Fresh Water
8. 18.7: Green Chemistry
9. 18.E: Chemistry of the Environment (Exercises)

• 19
1. Chapter 19: Chemical Thermodynamics
2. 19.1: Spontaneous Processes
3. 19.2: Entropy and the Second Law of Thermodynamics
4. 19.3: The Molecular Interpretation of Entropy
5. 19.4: Entropy Changes in Chemical Reactions
 6. 19.5: Gibbs Free Energy
 7. 19.6: Free Energy and Temperature
8. 19.7: Free Energy and the Equilibrium Constant
9. 19.E: Chemical Thermodynamics (Exercises)

 • 20
1. Chapter 20: Electrochemistry
2. 20.1: Oxidation States & Redox Reactions
3. 20.2: Balanced Oxidation-Reduction Equations
4. 20.3: Voltaic Cells
5. 20.4: Cell Potential Under Standard Conditions
6. 20.5: Gibbs Energy and Redox Reactions
7. 20.6: Cell Potential Under Nonstandard Conditions
 8. 20.7: Batteries and Fuel Cells
 9. 20.8: Corrosion
10. 20.9: Electrolysis
11. 20.E: Electrochemistry (Exercises)

 • 21
1. Chapter 21: Nuclear Chemistry
2. 21.1: Radioactivity
3. 21.2: Patterns of Nuclear Stability
4. 21.3: Nuclear Transmutations
5. 21.4: Rates of Radioactive Decay
6. 21.6: Energy Changes in Nuclear Reactions
 7. 21.7: Nuclear Fission
 8. 21.8: Nuclear Fusion
 9. 21.9: Biological Effects of Radiation
 10. 21.E: Exercises
11. 21.S: Nuclear Chemistry (Summary)

 • 22
1. Chapter 22: Chemistry of the Nonmetals
2. 22.1: General Concepts: Periodic Trends and Reactions
3. 22.2: Hydrogen
4. 22.3: Group 18: Nobel Gases
5. 22.4: Group 17: The Halogens
6. 22.5: Oxygen
7. **22.6: The Other Group 16 Elements: S, Se, Te, and Po**
8. **22.7: Nitrogen**
9. **22.8: The Other Group 15 Elements: P, As, Sb, and Bi**
10. **22.9: Carbon**
11. **22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb**
12. **22.11: Boron**
13. **22.E: Chemistry of the Nonmetals (Exercises)**
14. **22.S: Chemistry of the Nonmetals (Summary)**

- **23**

1. **Chapter 23: Metals and Metallurgy**
2. **23.1: Occurrence and Distribution of Metals**
3. **23.2: Pyrometallurgy**
4. **23.3: Hydrometallurgy**
5. **23.4: Electrometallurgy**
6. **23.5: Metallic Bonding**
7. **23.6: Alloys**
8. **23.7: Transition Metals**
9. **23.8: Chemistry of Selected Transition Metals**

- **24**

1. **Chapter 24: Chemistry of Coordination Chemistry**
2. **24.1: Metal Complexes**
3. **24.2: Ligands with more than one Donor Atom**
4. **24.3: Nomenclature of Coordination Chemistry**
5. **24.4: Isomerization**
6. **24.5: Color and Magnetism**
7. **24.6: Crystal Field Theory**
8. **24.E: Chemistry of Coordination Chemistry (Exercises)**

- **25**

1. **Chapter 25: Chemistry of Life: Organic and Biological Chemistry**
2. **25.1: General Characteristics of Organic Molecules**
3. **25.2: Introduction to Hydrocarbons**
4. **25.3: Alkanes**
5. **25.4: Unsaturated Hydrocarbons**
6. **25.5: Functional Groups**
7. **25.6: Compounds with a Carbonyl Group**
8. 25.7: Chirality in Organic Chemistry
9. 25.8: Introduction to Biochemistry
10. 25.9: Proteins
11. 25.10: Carbohydrates
12. 25.11: Nucleic Acids
13. 25.E: Organic and Biological Chemistry (Exercises)
14. 25.S: Organic and Biological Chemistry (Summary)

* Homework
1. 1.E: Matter and Measurement (Exercises)
2. 2.E: Atoms, Molecules, and Ions (Exercises)
3. 3.E: Stoichiometry (Exercises)
4. 4.E: Aqueous Reactions (Exercises)
5. 5.E: Thermochemistry (Exercises)
6. 6.E: Electronic Structure (Exercises)
7. 7.E: Periodic Trends (Exercises)
8. 8.E: Chemical Bonding Basics (Exercises)
9. 9.E: Bonding Theories (Exercises)
10. 10.E: Gases (Exercises)
11. 11.E: Liquids and Intermolecular Forces (Exercises)
13. 13.E: Properties of Solutions (Exercises)
15. 15.E: Chemical Equilibrium (Exercises)
16. 16.E: Acid–Base Equilibria (Exercises)
17. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
18. 18.E: Chemistry of the Environment (Exercises)
19. 19.E: Chemical Thermodynamics (Exercises)
20. 20.E: Electrochemistry (Exercises)
21. 21.E: Nuclear Chemistry (Exercises)
22. 22.E: Chemistry of the Nonmetals (Exercises)
23. 23.E: Metals and Metallurgy (Exercises)
24. 24.E: Chemistry of Coordination Chemistry (Exercises)
25. 25.E: Organic and Biological Chemistry (Exercises)

These is a summary of key concepts of the chapter in the Textmap created for "Chemistry: The Central Science" by Brown et al.
14.1: Factors that Affect Reaction Rates

chemical kinetics – area of chemistry dealing with speeds/rates of reactions

- rates of reactions affected by four factors
 1. concentrations of reactants
 2. temperature at which reaction occurs
 3. presence of a catalyst
 4. surface area of solid or liquid reactants and/or catalysts

14.2: Reaction Rates

- **reaction rate** – speed of a chemical reaction

\[
\text{average rate} = \frac{\text{change # moles B}}{\text{change in time}} = \frac{\Delta \text{moles B}}{\Delta t} \text{ if } A \to B
\]

\[
\Delta \text{moles B} = \text{moles B at final time} - \text{moles B at initial time}
\]

\[
\text{average rate} = -\frac{\Delta \text{moles A}}{\Delta t} \text{ if } A \to B
\]

14.2.1 Rates in Terms of Concentrations

- rate calculated in units of M/s
- brackets around a substance indicate the concentration
- **instantaneous rate** – rate at a particular time
- instantaneous rate obtained from the straight line tangent that touches the curve at a specific point
- slopes give instantaneous rates
- instantaneous rate also referred to as the rate

14.2.2 Reaction Rates and Stoichiometry

- for the irreversible reaction \(aA+bB\to cC+dD\)

\[
\text{rate} = -\frac{1}{a}\frac{\Delta [A]}{\Delta t} = -\frac{1}{b}\frac{\Delta [B]}{\Delta t} = \frac{1}{c}\frac{\Delta [C]}{\Delta t} = \frac{1}{d}\frac{\Delta [D]}{\Delta t}
\]

14.3: Concentration and Rate

- equation used only if C and D only substances formed
- Rate = \(k[A][B]\)
- **Rate law** – expression that shows that rate depends on concentrations of reactants
- \(k\) = rate constant
14.3.1 Reaction Order

- Rate = \(k[\text{reactant 1}]^m[\text{reactant 2}]^n \)
- \(m, n \) are called reaction orders
- \(m+n \), overall reaction order
- reaction orders do not have to correspond with coefficients in balanced equation
- values of reaction order determined experimentally
- reaction order can be fractional or negative

14.3.2 Units of Rates Constants

- units of rate constant depend on overall reaction order of rate law
- for reaction of second order overall
- units of rate = (units of rate constant)(units of concentration)
- units of rate constant = M\(^{-1}\)s\(^{-1}\)

14.3.3 Using Initial Rates to Determine Rate Laws

- zero order – no change in rate when concentration changed
- first order – change in concentration gives proportional changes in rate
- second order – change in concentration changes rate by the square of the concentration change, such as \(2^2 \) or \(3^2 \), etc...
- rate constant does not depend on concentration

14.4: The Change of Concentration with Time

- rate laws can be converted into equations that give concentrations of reactants or products

14.4.1 First-Order Reactions

\[
\text{rate} = -\frac{\Delta [A]}{\Delta t} = k[A]
\]

and in integral form:

\[
\ln[A]_t - \ln[A]_0 = -kt
\]

or

\[
\ln\frac{[A]_t}{[A]_0} = -kt
\]

\[
\ln[A]_t = -kt + \ln[A]_0
\]

- corresponds to a straight line with \(y = mx + b \)
- equations used to determine:
1. concentration of reactant remaining at any time
2. time required for given fraction of sample to react
3. time required for reactant concentration to reach a certain level

14.3.2 Half-Life

- half-life of first order reaction
 \[
 t_{\frac{1}{2}} = -\frac{\ln\frac{1}{2}}{k} = \frac{0.693}{k}
 \]
- half-life – time required for concentration of reactant to drop to one-half of initial value
- \((t_{\frac{1}{2}})\) of first order independent of initial concentrations
- half-life same at any given time of reaction
- in first order reaction – concentrations of reactant decreases by \(\frac{1}{2}\) in each series of regularly spaced time intervals

14.3.3 Second-Order Reactions

- rate depends on reactant concentration raised to second power or concentrations of two different reactants each raised to first power
 \[
 \text{Rate} = k[A]^2
 \]
 \[
 \frac{1}{[A]_t} = kt + \frac{1}{[A]_0}
 \]
 \[
 \text{half life} = t_{\frac{1}{2}} = \frac{1}{k[A]_0}
 \]
- half life dependent on initial concentration of reactant

14.5: Temperature and Rate

- rate constant must increase with increasing temperature, thus increasing the rate of reaction

14.5.1 The Collision Model

- collision model – molecules must collide to react
- greater frequency of collisions the greater the reaction rate
- for most reactions only a small fraction of collisions leads to a reaction

14.5.2 Activation Energy

- Svante August Arrhenius
- Molecules must have a minimum amount of energy to react
- Energy comes from kinetic energy of collisions
- Kinetic energy used to break bonds
- Activation energy, \(E_a\) – minimum energy required to initiate a chemical reaction
- Activated complex or transition state – atoms at the top of the energy barrier
- Rate depends on temperature and E_a
- Lower E_a means faster reaction
- Reactions occur when collisions between molecules occur with enough energy and proper orientation

14.5.3 The Arrhenius Equation

- reaction rate data:
 - the Arrhenius Equation:

 \[
 k = A e^{-\frac{E_a}{RT}}
 \]

 - (k) = rate constant, (E_a) = activation energy, (R) = gas constant (8.314 J/(mol K)), (T) = absolute temperature, (A) = frequency factor
 - (A) relates to frequency of collisions, favorable orientations

 \[
 \ln k = -\frac{E_a}{RT} + \ln A
 \]

 - the $(\ln k)$ vs. $(1/T)$ graph (also known as an Arrhenius plot) has a slope $(-E_a/R)$ and the y-intercept $(\ln A)$
 - for two temperatures:

 \[
 \ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)
 \]

 - used to calculate rate constant, (k_1) and (T_1)

14.6: Reaction Mechanisms

- reaction mechanism – process by which a reaction occurs

14.6.1 Elementary Steps

- elementary steps – each step in a reaction
- molecularity – if only one molecule involved in step
- unimolecular – if only one molecule involved in step
- bimolecular – elementary step involving collision of two reactant molecules
- termolecular – elementary step involving simultaneous collision of three molecules
- elementary steps in multi-step mechanism must always add to give chemical equation of overall process
- intermediate – product formed in one step and consumed in a later step

14.6.2 Rate Laws of Elementary Steps

- if reaction is known to be an elementary step then the rate law is known
- rate of unimolecular step is first order (Rate = $k[A]$)
- rate of bimolecular steps is second order (Rate = $k[A][B]$)
• first order in \([A]\) and \([B]\)
• if double \([A]\) than number of collisions of A and B will double

14.6.3 Rate Laws of Multi-step Mechanisms

• rate-determining step – slowest elementary step
• determines rate law of overall reaction

14.6.4 Mechanisms with an Initial Slow Step vs. Mechanisms with an Initial Fast Step

• intermediates are usually unstable, in low concentration, and difficult to isolate
• when a fast step precedes a slow one, solve for concentration of intermediate by assuming that equilibrium is established in fast step

14.7: Catalysis

• catalyst – substance that changes speed of chemical reaction without undergoing a permanent chemical change

14.7.1 Homogeneous Catalysis

• homogeneous catalyst – catalyst that is present in same phase as reacting molecule
• catalysts alter \(E_a\) or \(A\)
• generally catalysts lowers overall \(E_a\) for chemical reaction
• catalysts provides a different mechanism for reaction

14.7.2 Heterogeneous Catalysis

• exists in different phase from reactants
• initial step in heterogeneous catalyst is adsorption
• adsorption – binding of molecules to surface
• adsorption occurs because ions/atoms at surface of solid extremely reactive

14.7.3 Enzymes

• biological catalysts
• large protein molecules with molecular weights 10,000 – 1 million amu
• catalase – enzyme in blood and liver that decomposes hydrogen peroxide into water and oxygen
• substrates – substances that undergo reaction at the active site
• lock-and-key model – substrate molecules bind specifically to the active site
• enzyme-substrate complex – combination of enzyme and substrate
• binding between enzyme and substrate involves intermolecular forces (dipole-dipole, hydrogen bonding, and London dispersion forces)
• product from reaction leaves enzyme allowing for another substrate to enter enzyme
• enzyme inhibitors – molecules that bind strongly to enzymes
• **turnover number** – number of catalyzed reactions occurring at a particular active site
• large turnover numbers = low activation energies