A general chemistry Libretexts Textmap organized around the textbook

Chemistry: The Central Science

by Brown, LeMay, Busten, Murphy, and Woodward

1. Chapter 1: Introduction: Matter and Measurement
 2. 1.1: The Study of Chemistry
 3. 1.2: Classification of Matter
 4. 1.3: Properties of Matter
 5. 1.4: Units of Measurement
 6. 1.5: Uncertainty in Measurement
 7. 1.6: Dimensional Analysis
 8. 1.E: Matter and Measurement (Exercises)
 9. 1.S: Matter and Measurement (Summary)

• 2

1. Chapter 2: Atoms, Molecules, and Ions
 2. 2.1: The Atomic Theory of Matter
 3. 2.2: The Discovery of Atomic Structure
 4. 2.3: The Modern View of Atomic Structure
 5. 2.4: Atomic Mass
 6. 2.5: The Periodic Table
 7. 2.6: Molecules and Molecular Compounds
 8. 2.7: Ions and Ionic Compounds
 9. 2.8: Naming Inorganic Compounds
 10. 2.9: Some Simple Organic Compounds
 11. 2.E: Atoms, Molecules, and Ions (Exercises)
 12. 2.S: Atoms, Molecules, and Ions (Summary)

• 3

1. Chapter 3: Stoichiometry: Chemical Formulas and Equations
 2. 3.1: Chemical Equations
 3. 3.2: Some Simple Patterns of Chemical Reactivity
 4. 3.3: Formula Masses
 5. 3.4: Avogadro's Number and the Mole
 6. 3.5: Empirical Formulas from Analysis
 7. 3.6: Quantitative Information from Balanced Equations
 8. 3.7: Limiting Reactants
 9. 3.E: Stoichiometry (Exercises)
10. **3.S: Stoichiometry (Summary)**

• 4

1. Chapter 4: Reactions in Aqueous Solution
2. **4.1: General Properties of Aqueous Solutions**
3. **4.2: Precipitation Reactions**
4. **4.3: Acid-Base Reactions**
5. **4.4: Oxidation-Reduction Reactions**
6. **4.5: Concentration of Solutions**
7. **4.6: Solution Stoichiometry and Chemical Analysis**
8. **4.E: Reactions in Aqueous Solution (Exercises)**

• 5

1. Chapter 5: Thermochemistry
2. **5.1: The Nature of Energy**
3. **5.2: The First Law of Thermodynamics**
4. **5.3: Enthalpy**
5. **5.4: Enthalpy of Reaction**
6. **5.5: Calorimetry**
7. **5.6: Hess’s Law**
8. **5.7: Enthalpies of Formation**
9. **5.8: Foods and Fuels**
10. **5.E: Thermochemistry (Exercises)**
11. **5.S: Thermochemistry (Summary)**

• 6

1. Chapter 6: Electronic Structure of Atoms
2. **6.1: The Wave Nature of Light**
3. **6.2: Quantized Energy and Photons**
4. **6.3: Line Spectra and the Bohr Model**
5. **6.4: The Wave Behavior of Matter**
6. **6.5: Quantum Mechanics and Atomic Orbitals**
7. **6.6: 3D Representation of Orbitals**
8. **6.7: Many-Electron Atoms**
9. **6.8: Electron Configurations**
10. **6.9: Electron Configurations and the Periodic Table**
1. Chapter 7: Periodic Properties of the Elements
 2. 7.1: Development of the Periodic Table
 3. 7.2: Effective Nuclear Charge
 4. 7.3: Sizes of Atoms and Ions
 5. 7.4: Ionization Energy
 6. 7.5: Electron Affinities
 7. 7.6: Metals, Nonmetals, and Metalloids
 8. 7.7: Group Trends for the Active Metals
 9. 7.8: Group Trends for Selected Nonmetals
 10. 7.E: Periodic Properties of the Elements (Exercises)
 11. 7.S: Periodic Properties of the Elements (Summary)

1. Chapter 8: Basic Concepts of Chemical Bonding
 2. 8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule
 3. 8.2: Ionic Bonding
 4. 8.3: Covalent Bonding
 5. 8.4: Bond Polarity and Electronegativity
 6. 8.5: Drawing Lewis Structures
 7. 8.6: Resonance Structures
 8. 8.7: Exceptions to the Octet Rule
 9. 8.8: Strength of Covalent Bonds
 10. 8.E: Basic Concepts of Chemical Bonding (Exercises)
 11. 8.S: Basic Concepts of Chemical Bonding (Summary)

1. Chapter 9: Molecular Geometry and Bonding Theories
 2. 9.1: Molecular Shapes
 3. 9.2: The VSEPR Model
 4. 9.3: Molecular Shape and Molecular Polarity
 5. 9.4: Covalent Bonding and Orbital Overlap
 6. 9.5: Hybrid Orbitals
 7. 9.6: Multiple Bonds
 8. 9.7: Molecular Orbitals
 9. 9.8: Second-Row Diatomic Molecules
 10. 9.E: Exercises
 11. 9.S: Molecular Geometry and Bonding Theories (Summary)
1. Chapter 13: Properties of Solutions
 2. 13.1: The Solution Process
 3. 13.2: Saturated Solutions and Solubility
 4. 13.3: Factors Affecting Solubility
 5. 13.4: Ways of Expressing Concentration
 6. 13.5: Colligative Properties
 7. 13.6: Colloids
 8. 13.E: Properties of Solutions (Exercises)
 9. 13.S: Properties of Solutions (Summary)

 • 14

1. Chapter 14: Chemical Kinetics
 2. 14.1: Factors that Affect Reaction Rates
 3. 14.2: Reaction Rates
 4. 14.3: Concentration and Rates (Differential Rate Laws)
 5. 14.4: The Change of Concentration with Time (Integrated Rate Laws)
 6. 14.5: Temperature and Rate
 7. 14.6: Reaction Mechanisms
 8. 14.7: Catalysis
 9. 14.E: Exercises
 10. 14.S: Chemical Kinetics (Summary)

 • 15

1. Chapter 15: Chemical Equilibrium
 2. 15.1: The Concept of Equilibrium
 3. 15.2: The Equilibrium Constant
 4. 15.3: Interpreting & Working with Equilibrium Constants
 5. 15.4: Heterogeneous Equilibria
 6. 15.5: Calculating Equilibrium Constants
 7. 15.6: Applications of Equilibrium Constants
 8. 15.7: Le Châtelier's Principle
 9. 15.E: Exercises
 10. 15.S: Chemical Equilibrium (Summary)

 • 16

1. Chapter 16: Acid–Base Equilibria
 2. 16.1: Acids and Bases: A Brief Review
 3. 16.2: Brønsted–Lowry Acids and Bases
 4. 16.3: The Autoionization of Water
5. 16.4: The pH Scale
6. 16.5: Strong Acids and Bases
7. 16.6: Weak Acids
8. 16.7: Weak Bases
9. 16.8: Relationship Between KaKa and KbKb
10. 16.9: Acid-Base Properties of Salt Solutions
11. 16.10: Acid-Base Behavior and Chemical Structure
12. 16.11: Lewis Acids and Bases
13. 16.E: Acid–Base Equilibria (Exercises)
14. 16.S: Acid–Base Equilibria (Summary)

• 17

1. Chapter 17: Additional Aspects of Aqueous Equilibria
 2. 17.1: The Common-Ion Effect
 3. 17.2: Buffered Solutions
 4. 17.3: Acid-Base Titrations
 5. 17.4: Solubility Equilibria
 6. 17.5: Factors that Affect Solubility
 7. 17.6: Precipitation and Separation of Ions
 8. 17.7: Qualitative Analysis for Metallic Elements
9. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
10. 17.S: Additional Aspects of Aqueous Equilibria (Summary)

• 18

1. Chapter 18: Chemistry of the Environment
 2. 18.1: Earth's Atmosphere
 3. 18.2: Outer Regions of the Atmosphere
 4. 18.3: Ozone in the Upper Atmosphere
 5. 18.4: Chemistry of the Troposphere
 6. 18.5: The World Ocean
 7. 18.6: Fresh Water
 8. 18.7: Green Chemistry
9. 18.E: Chemistry of the Environment (Exercises)

• 19

1. Chapter 19: Chemical Thermodynamics
 2. 19.1: Spontaneous Processes
 3. 19.2: Entropy and the Second Law of Thermodynamics
 4. 19.3: The Molecular Interpretation of Entropy
5. 19.4: Entropy Changes in Chemical Reactions
6. 19.5: Gibbs Free Energy
7. 19.6: Free Energy and Temperature
8. 19.7: Free Energy and the Equilibrium Constant
9. 19.E: Chemical Thermodynamics (Exercises)

• 20

1. Chapter 20: Electrochemistry
2. 20.1: Oxidation States & Redox Reactions
3. 20.2: Balanced Oxidation-Reduction Equations
4. 20.3: Voltaic Cells
5. 20.4: Cell Potential Under Standard Conditions
6. 20.5: Gibbs Energy and Redox Reactions
7. 20.6: Cell Potential Under Nonstandard Conditions
8. 20.7: Batteries and Fuel Cells
9. 20.8: Corrosion
10. 20.9: Electrolysis
11. 20.E: Electrochemistry (Exercises)

• 21

1. Chapter 21: Nuclear Chemistry
2. 21.1: Radioactivity
3. 21.2: Patterns of Nuclear Stability
4. 21.3: Nuclear Transmutations
5. 21.4: Rates of Radioactive Decay
6. 21.6: Energy Changes in Nuclear Reactions
7. 21.7: Nuclear Fission
8. 21.8: Nuclear Fusion
9. 21.9: Biological Effects of Radiation
10. 21.E: Exercises
11. 21.S: Nuclear Chemistry (Summary)

• 22

1. Chapter 22: Chemistry of the Nonmetals
2. 22.1: General Concepts: Periodic Trends and Reactions
3. 22.2: Hydrogen
4. 22.3: Group 18: Nobel Gases
5. 22.4: Group 17: The Halogens
6. 22.5: Oxygen
7. 22.6: The Other Group 16 Elements: S, Se, Te, and Po
8. 22.7: Nitrogen
9. 22.8: The Other Group 15 Elements: P, As, Sb, and Bi
10. 22.9: Carbon
11. 22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb
12. 22.11: Boron
13. 22.E: Chemistry of the Nonmetals (Exercises)
14. 22.S: Chemistry of the Nonmetals (Summary)

• 23
1. Chapter 23: Metals and Metallurgy
2. 23.1: Occurrence and Distribution of Metals
3. 23.2: Pyrometallurgy
4. 23.3: Hydrometallurgy
5. 23.4: Electrometallurgy
6. 23.5: Metallic Bonding
7. 23.6: Alloys
8. 23.7: Transition Metals
9. 23.8: Chemistry of Selected Transition Metals
10. 23.E: Metals and Metallurgy (Exercises)

• 24
1. Chapter 24: Chemistry of Coordination Chemistry
2. 24.1: Metal Complexes
3. 24.2: Ligands with more than one Donor Atom
4. 24.3: Nomenclature of Coordination Chemistry
5. 24.4: Isomerization
6. 24.5: Color and Magnetism
7. 24.6: Crystal Field Theory
8. 24.E: Chemistry of Coordination Chemistry (Exercises)

• 25
1. Chapter 25: Chemistry of Life: Organic and Biological Chemistry
2. 25.1: General Characteristics of Organic Molecules
3. 25.2: Introduction to Hydrocarbons
4. 25.3: Alkanes
5. 25.4: Unsaturated Hydrocarbons
6. 25.5: Functional Groups
7. 25.6: Compounds with a Carbonyl Group
8. 25.7: Chirality in Organic Chemistry
9. 25.8: Introduction to Biochemistry
10. 25.9: Proteins
11. 25.10: Carbohydrates
12. 25.11: Nucleic Acids
13. 25.E: Organic and Biological Chemistry (Exercises)
14. 25.S: Organic and Biological Chemistry (Summary)

• Homework
1. 1.E: Matter and Measurement (Exercises)
2. 2.E: Atoms, Molecules, and Ions (Exercises)
3. 3.E: Stoichiometry (Exercises)
4. 4.E: Aqueous Reactions (Exercises)
5. 5.E: Thermochemistry (Exercises)
6. 6.E: Electronic Structure (Exercises)
7. 7.E: Periodic Trends (Exercises)
8. 8.E: Chemical Bonding Basics (Exercises)
9. 9.E: Bonding Theories (Exercises)
10. 10.E: Gases (Exercises)
11. 11.E: Liquids and Intermolecular Forces (Exercises)
13. 13.E: Properties of Solutions (Exercises)
15. 15.E: Chemical Equilibrium (Exercises)
16. 16.E: Acid–Base Equilibria (Exercises)
17. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
18. 18.E: Chemistry of the Environment (Exercises)
19. 19.E: Chemical Thermodynamics (Exercises)
20. 20.E: Electrochemistry (Exercises)
21. 21.E: Nuclear Chemistry (Exercises)
22. 22.E: Chemistry of the Nonmetals (Exercises)
23. 23.E: Metals and Metallurgy (Exercises)
24. 24.E: Chemistry of Coordination Chemistry (Exercises)
25. 25.E: Organic and Biological Chemistry (Exercises)

These is a summary of key concepts of the chapter in the Textmap created for "Chemistry: The Central Science" by Brown et al.
14.1: Factors that Affect Reaction Rates

chemical kinetics – area of chemistry dealing with speeds/rates of reactions

- rates of reactions affected by four factors
 1. concentrations of reactants
 2. temperature at which reaction occurs
 3. presence of a catalyst
 4. surface area of solid or liquid reactants and/or catalysts

14.2: Reaction Rates

- **reaction rate** – speed of a chemical reaction

\[
\text{average rate} = \frac{\text{change # moles B}}{\text{change in time}} = \frac{\Delta \text{moles B}}{\Delta t} \text{ if } A \to B
\]

\[
\Delta \text{moles B} = \text{moles B at final time} - \text{moles B at initial time}
\]

\[
\text{average rate} = -\frac{\Delta \text{moles A}}{\Delta t} \text{ if } A \to B
\]

14.2.1 Rates in Terms of Concentrations

- rate calculated in units of M/s
- brackets around a substance indicate the concentration
- **instantaneous rate** – rate at a particular time
- instantaneous rate obtained from the straight line tangent that touches the curve at a specific point
- slopes give instantaneous rates
- instantaneous rate also referred to as the rate

14.2.2 Reaction Rates and Stoichiometry

- for the irreversible reaction \((aA+bB \to cC+dD)\)

\[
\text{rate} = -\frac{1}{a} \frac{\Delta [A]}{\Delta t} = -\frac{1}{b} \frac{\Delta [B]}{\Delta t} = \frac{1}{c} \frac{\Delta [C]}{\Delta t} = \frac{1}{d} \frac{\Delta [D]}{\Delta t}
\]

14.3: Concentration and Rate

- equation used only if C and D only substances formed
- Rate = \(k[A][B]\)
- **Rate law** – expression that shows that rate depends on concentrations of reactants
- \(k = \text{rate constant}\)
14.3.1 Reaction Order

- Rate = \(k[\text{reactant 1}]^m[\text{reactant 2}]^n \)
- \(m, n \) are called reaction orders
- \(m+n \), overall reaction order
- reaction orders do not have to correspond with coefficients in balanced equation
- values of reaction order determined experimentally
- reaction order can be fractional or negative

14.3.2 Units of Rates Constants

- units of rate constant depend on overall reaction order of rate law
- for reaction of second order overall
- units of rate = (units of rate constant)(units of concentration)\(^2\)
- units of rate constant = \(M^{-1}s^{-1} \)

14.3.3 Using Initial Rates to Determine Rate Laws

- zero order – no change in rate when concentration changed
- first order – change in concentration gives proportional changes in rate
- second order – change in concentration changes rate by the square of the concentration change, such as \(2^2 \) or \(3^2 \), etc…
- rate constant does not depend on concentration

14.4: The Change of Concentration with Time

- rate laws can be converted into equations that give concentrations of reactants or products

14.4.1 First-Order Reactions

\[\text{rate} = -\frac{\Delta [A]}{\Delta t} = k[A] \]

and in integral form:

\[\ln[A]_t - \ln[A]_0 = -kt \]

or

\[\ln\frac{[A]_t}{[A]_0} = -kt \]

\[\ln[A]_t = -kt + \ln[A]_0 \]

- corresponds to a straight line with \(y = mx + b \)
- equations used to determine:
1. concentration of reactant remaining at any time
2. time required for given fraction of sample to react
3. time required for reactant concentration to reach a certain level

14.3.2 Half-Life

- half-life of first order reaction
 \[t_{\frac{1}{2}} = \frac{-\ln\frac{1}{2}}{k} = \frac{0.693}{k}\]
- half-life – time required for concentration of reactant to drop to one-half of initial value
- \(t_{(1/2)}\) of first order independent of initial concentrations
- half-life same at any given time of reaction
- in first order reaction – concentrations of reactant decreases by ½ in each series of regularly spaced time intervals

14.3.3 Second-Order Reactions

- rate depends on reactant concentration raised to second power or concentrations of two different reactants each raised to first power
 \[\text{Rate} = k[A]^2\]
 \[\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}\]
 \[\text{half life} = t_{\frac{1}{2}} = \frac{1}{k[A]_0}\]
- half life dependent on initial concentration of reactant

14.5: Temperature and Rate

- rate constant must increase with increasing temperature, thus increasing the rate of reaction

14.5.1 The Collision Model

- collision model – molecules must collide to react
- greater frequency of collisions the greater the reaction rate
- for most reactions only a small fraction of collisions leads to a reaction

14.5.2 Activation Energy

- Svante August Arrhenius
- Molecules must have a minimum amount of energy to react
- Energy comes from kinetic energy of collisions
- Kinetic energy used to break bonds
- Activation energy, \(E_a\) – minimum energy required to initiate a chemical reaction
• Activated complex or transition state – atoms at the top of the energy barrier
• Rate depends on temperature and E_a
• Lower E_a means faster reaction
• Reactions occur when collisions between molecules occur with enough energy and proper orientation

14.5.3 The Arrhenius Equation

• reaction rate data:
 the Arrhenius Equation:

\[
\textstyle k = A e^{-\frac{E_a}{RT}}
\]

\[
\begin{align*}
\textstyle (k) &= \text{rate constant}, \ (E_a) = \text{activation energy}, \ (R) = \text{gas constant (8.314 J/(mol K)}), \ (T) = \text{absolute temperature}, \\
\textstyle (A) &= \text{frequency factor}
\end{align*}
\]

• $\ln k$ relates to frequency of collisions, favorable orientations

\[
\textstyle \ln k = -\frac{E_a}{RT} + \ln A
\]

• the $\ln k$ vs. $1/\text{t}$ graph (also known as an Arrhenius plot) has a slope $(-E_a/R)$ and the y-intercept $\ln A$
• for two temperatures:

\[
\textstyle \ln \frac{k_1}{k_2} = \frac{E_a}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)
\]

• used to calculate rate constant, k_1, and T_1

14.6: Reaction Mechanisms

• reaction mechanism – process by which a reaction occurs

14.6.1 Elementary Steps

• elementary steps – each step in a reaction
• molecularity – if only one molecule involved in step
• unimolecular – if only one molecule involved in step
• bimolecular – elementary step involving collision of two reactant molecules
• termolecular – elementary step involving simultaneous collision of three molecules
• elementary steps in multi-step mechanism must always add to give chemical equation of overall process
• intermediate – product formed in one step and consumed in a later step

14.6.2 Rate Laws of Elementary Steps

• if reaction is known to be an elementary step then the rate law is known
• rate of unimolecular step is first order (Rate = $k[A]$)
• rate of bimolecular steps is second order (Rate = $k[A][B]$)
• first order in [A] and [B]
• if double [A] than number of collisions of A and B will double

14.6.3 Rate Laws of Multi-step Mechanisms

• rate-determining step – slowest elementary step
• determines rate law of overall reaction

14.6.4 Mechanisms with an Initial Slow Step vs. Mechanisms with an Initial Fast Step

• intermediates are usually unstable, in low concentration, and difficult to isolate
• when a fast step precedes a slow one, solve for concentration of intermediate by assuming that equilibrium is established in fast step

14.7: Catalysis

• catalyst – substance that changes speed of chemical reaction without undergoing a permanent chemical change

14.7.1 Homogeneous Catalysis

• homogeneous catalyst – catalyst that is present in same phase as reacting molecule
• catalysts alter E_a or A
• generally catalysts lowers overall E_a for chemical reaction
• catalysts provides a different mechanism for reaction

14.7.2 Heterogeneous Catalysis

• exists in different phase from reactants
• initial step in heterogeneous catalyst is adsorption
• adsorption – binding of molecules to surface
• adsorption occurs because ions/atoms at surface of solid extremely reactive

14.7.3 Enzymes

• biological catalysts
• large protein molecules with molecular weights 10,000 – 1 million amu
• catalase – enzyme in blood and liver that decomposes hydrogen peroxide into water and oxygen
• substrates – substances that undergo reaction at the active site
• lock-and-key model – substrate molecules bind specifically to the active site
• enzyme-substrate complex – combination of enzyme and substrate
• binding between enzyme and substrate involves intermolecular forces (dipole-dipole, hydrogen bonding, and London dispersion forces)
• product from reaction leaves enzyme allowing for another substrate to enter enzyme
• enzyme inhibitors – molecules that bind strongly to enzymes
• **turnover number** – number of catalyzed reactions occurring at a particular active site
• large turnover numbers = low activation energies