A general chemistry Libretexts Textmap organized around the textbook

Chemistry: The Central Science
by Brown, LeMay, Busten, Murphy, and Woodward

1. Chapter 1: Introduction: Matter and Measurement
 2. 1.1: The Study of Chemistry
 3. 1.2: Classification of Matter
 4. 1.3: Properties of Matter
 5. 1.4: Units of Measurement
 6. 1.5: Uncertainty in Measurement
 7. 1.6: Dimensional Analysis
 8. 1.E: Matter and Measurement (Exercises)
 9. 1.S: Matter and Measurement (Summary)

• 2

1. Chapter 2: Atoms, Molecules, and Ions
 2. 2.1: The Atomic Theory of Matter
 3. 2.2: The Discovery of Atomic Structure
 4. 2.3: The Modern View of Atomic Structure
 5. 2.4: Atomic Mass
 6. 2.5: The Periodic Table
 7. 2.6: Molecules and Molecular Compounds
 8. 2.7: Ions and Ionic Compounds
 9. 2.8: Naming Inorganic Compounds
 10. 2.9: Some Simple Organic Compounds
 11. 2.E: Atoms, Molecules, and Ions (Exercises)
 12. 2.S: Atoms, Molecules, and Ions (Summary)

• 3

1. Chapter 3: Stoichiometry: Chemical Formulas and Equations
 2. 3.1: Chemical Equations
 3. 3.2: Some Simple Patterns of Chemical Reactivity
 4. 3.3: Formula Masses
 5. 3.4: Avogadro's Number and the Mole
 6. 3.5: Empirical Formulas from Analysis
 7. 3.6: Quantitative Information from Balanced Equations
 8. 3.7: Limiting Reactants
 9. 3.E: Stoichiometry (Exercises)
10. **3.5: Stoichiometry (Summary)**

- 4

1. **Chapter 4: Reactions in Aqueous Solution**
2. **4.1: General Properties of Aqueous Solutions**
3. **4.2: Precipitation Reactions**
4. **4.3: Acid-Base Reactions**
5. **4.4: Oxidation-Reduction Reactions**
6. **4.5: Concentration of Solutions**
7. **4.6: Solution Stoichiometry and Chemical Analysis**
8. **4.E: Reactions in Aqueous Solution (Exercises)**

- 5

1. **Chapter 5: Thermochemistry**
2. **5.1: The Nature of Energy**
3. **5.2: The First Law of Thermodynamics**
4. **5.3: Enthalpy**
5. **5.4: Enthalpy of Reaction**
6. **5.5: Calorimetry**
7. **5.6: Hess’s Law**
8. **5.7: Enthalpies of Formation**
9. **5.8: Foods and Fuels**
10. **5.E: Thermochemistry (Exercises)**
11. **5.S: Thermochemistry (Summary)**

- 6

1. **Chapter 6: Electronic Structure of Atoms**
2. **6.1: The Wave Nature of Light**
3. **6.2: Quantized Energy and Photons**
4. **6.3: Line Spectra and the Bohr Model**
5. **6.4: The Wave Behavior of Matter**
6. **6.5: Quantum Mechanics and Atomic Orbitals**
7. **6.6: 3D Representation of Orbitals**
8. **6.7: Many-Electron Atoms**
9. **6.8: Electron Configurations**
10. **6.9: Electron Configurations and the Periodic Table**
7
1. Chapter 7: Periodic Properties of the Elements
2. 7.1: Development of the Periodic Table
3. 7.2: Effective Nuclear Charge
4. 7.3: Sizes of Atoms and Ions
5. 7.4: Ionization Energy
6. 7.5: Electron Affinities
7. 7.6: Metals, Nonmetals, and Metalloids
8. 7.7: Group Trends for the Active Metals
9. 7.8: Group Trends for Selected Nonmetals
10. 7.E: Periodic Properties of the Elements (Exercises)
11. 7.S: Periodic Properties of the Elements (Summary)

8
1. Chapter 8: Basic Concepts of Chemical Bonding
2. 8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule
3. 8.2: Ionic Bonding
4. 8.3: Covalent Bonding
5. 8.4: Bond Polarity and Electronegativity
6. 8.5: Drawing Lewis Structures
7. 8.6: Resonance Structures
8. 8.7: Exceptions to the Octet Rule
9. 8.8: Strength of Covalent Bonds
10. 8.E: Basic Concepts of Chemical Bonding (Exercises)
11. 8.S: Basic Concepts of Chemical Bonding (Summary)

9
1. Chapter 9: Molecular Geometry and Bonding Theories
2. 9.1: Molecular Shapes
3. 9.2: The VSEPR Model
4. 9.3: Molecular Shape and Molecular Polarity
5. 9.4: Covalent Bonding and Orbital Overlap
6. 9.5: Hybrid Orbitals
7. 9.6: Multiple Bonds
8. 9.7: Molecular Orbitals
9. 9.8: Second-Row Diatomic Molecules
10. 9.E: Exercises
11. 9.S: Molecular Geometry and Bonding Theories (Summary)
1. Chapter 13: Properties of Solutions
 2. 13.1: The Solution Process
 3. 13.2: Saturated Solutions and Solubility
 4. 13.3: Factors Affecting Solubility
 5. 13.4: Ways of Expressing Concentration
 6. 13.5: Colligative Properties
 7. 13.6: Colloids
 8. 13.E: Properties of Solutions (Exercises)
 9. 13.S: Properties of Solutions (Summary)

• 14

1. Chapter 14: Chemical Kinetics
 2. 14.1: Factors that Affect Reaction Rates
 3. 14.2: Reaction Rates
 4. 14.3: Concentration and Rates (Differential Rate Laws)
 5. 14.4: The Change of Concentration with Time (Integrated Rate Laws)
 6. 14.5: Temperature and Rate
 7. 14.6: Reaction Mechanisms
 8. 14.7: Catalysis
 9. 14.E: Exercises
10. 14.S: Chemical Kinetics (Summary)

• 15

1. Chapter 15: Chemical Equilibrium
 2. 15.1: The Concept of Equilibrium
 3. 15.2: The Equilibrium Constant
 4. 15.3: Interpreting & Working with Equilibrium Constants
 5. 15.4: Heterogeneous Equilibria
 6. 15.5: Calculating Equilibrium Constants
 7. 15.6: Applications of Equilibrium Constants
 8. 15.7: Le Châtelier's Principle
 9. 15.E: Exercises
10. 15.S: Chemical Equilibrium (Summary)

• 16

1. Chapter 16: Acid–Base Equilibria
 2. 16.1: Acids and Bases: A Brief Review
 3. 16.2: Brønsted–Lowry Acids and Bases
 4. 16.3: The Autoionization of Water
5. 16.4: The pH Scale
6. 16.5: Strong Acids and Bases
7. 16.6: Weak Acids
8. 16.7: Weak Bases
9. 16.8: Relationship Between KaKa and KbKb
10. 16.9: Acid-Base Properties of Salt Solutions
11. 16.10: Acid-Base Behavior and Chemical Structure
12. 16.11: Lewis Acids and Bases
13. 16.E: Acid–Base Equilibria (Exercises)
14. 16.S: Acid–Base Equilibria (Summary)

• 17

1. Chapter 17: Additional Aspects of Aqueous Equilibria
2. 17.1: The Common-Ion Effect
3. 17.2: Buffered Solutions
4. 17.3: Acid-Base Titrations
5. 17.4: Solubility Equilibria
6. 17.5: Factors that Affect Solubility
7. 17.6: Precipitation and Separation of Ions
8. 17.7: Qualitative Analysis for Metallic Elements
9. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
10. 17.S: Additional Aspects of Aqueous Equilibria (Summary)

• 18

1. Chapter 18: Chemistry of the Environment
2. 18.1: Earth's Atmosphere
3. 18.2: Outer Regions of the Atmosphere
4. 18.3: Ozone in the Upper Atmosphere
5. 18.4: Chemistry of the Troposphere
6. 18.5: The World Ocean
7. 18.6: Fresh Water
8. 18.7: Green Chemistry
9. 18.E: Chemistry of the Environment (Exercises)

• 19

1. Chapter 19: Chemical Thermodynamics
2. 19.1: Spontaneous Processes
3. 19.2: Entropy and the Second Law of Thermodynamics
4. 19.3: The Molecular Interpretation of Entropy
5. **19.4: Entropy Changes in Chemical Reactions**
6. **19.5: Gibbs Free Energy**
7. **19.6: Free Energy and Temperature**
8. **19.7: Free Energy and the Equilibrium Constant**
9. **19.E: Chemical Thermodynamics (Exercises)**

• **20**

1. **Chapter 20: Electrochemistry**
2. **20.1: Oxidation States & Redox Reactions**
3. **20.2: Balanced Oxidation-Reduction Equations**
4. **20.3: Voltaic Cells**
5. **20.4: Cell Potential Under Standard Conditions**
6. **20.5: Gibbs Energy and Redox Reactions**
7. **20.6: Cell Potential Under Nonstandard Conditions**
8. **20.7: Batteries and Fuel Cells**
9. **20.8: Corrosion**
10. **20.9: Electrolysis**
11. **20.E: Electrochemistry (Exercises)**

• **21**

1. **Chapter 21: Nuclear Chemistry**
2. **21.1: Radioactivity**
3. **21.2: Patterns of Nuclear Stability**
4. **21.3: Nuclear Transmutations**
5. **21.4: Rates of Radioactive Decay**
6. **21.6: Energy Changes in Nuclear Reactions**
7. **21.7: Nuclear Fission**
8. **21.8: Nuclear Fusion**
9. **21.9: Biological Effects of Radiation**
10. **21.E: Exercises**
11. **21.S: Nuclear Chemistry (Summary)**

• **22**

1. **Chapter 22: Chemistry of the Nonmetals**
2. **22.1: General Concepts: Periodic Trends and Reactions**
3. **22.2: Hydrogen**
4. **22.3: Group 18: Nobel Gases**
5. **22.4: Group 17: The Halogens**
6. **22.5: Oxygen**
7. **22.6: The Other Group 16 Elements: S, Se, Te, and Po**

8. **22.7: Nitrogen**

9. **22.8: The Other Group 15 Elements: P, As, Sb, and Bi**

10. **22.9: Carbon**

11. **22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb**

12. **22.11: Boron**

13. **22.E: Chemistry of the Nonmetals (Exercises)**

14. **22.S: Chemistry of the Nonmetals (Summary)**

23

1. **Chapter 23: Metals and Metallurgy**

2. **23.1: Occurrence and Distribution of Metals**

3. **23.2: Pyrometallurgy**

4. **23.3: Hydrometallurgy**

5. **23.4: Electrometallurgy**

6. **23.5: Metallic Bonding**

7. **23.6: Alloys**

8. **23.7: Transition Metals**

9. **23.8: Chemistry of Selected Transition Metals**

24

1. **Chapter 24: Chemistry of Coordination Chemistry**

2. **24.1: Metal Complexes**

3. **24.2: Ligands with more than one Donor Atom**

4. **24.3: Nomenclature of Coordination Chemistry**

5. **24.4: Isomerization**

6. **24.5: Color and Magnetism**

7. **24.6: Crystal Field Theory**

8. **24.E: Chemistry of Coordination Chemistry (Exercises)**

25

1. **Chapter 25: Chemistry of Life: Organic and Biological Chemistry**

2. **25.1: General Characteristics of Organic Molecules**

3. **25.2: Introduction to Hydrocarbons**

4. **25.3: Alkanes**

5. **25.4: Unsaturated Hydrocarbons**

6. **25.5: Functional Groups**

7. **25.6: Compounds with a Carbonyl Group**
8. 25.7: Chirality in Organic Chemistry
9. 25.8: Introduction to Biochemistry
10. 25.9: Proteins
11. 25.10: Carbohydrates
12. 25.11: Nucleic Acids
13. 25.E: Organic and Biological Chemistry (Exercises)
14. 25.S: Organic and Biological Chemistry (Summary)

• Homework
1. 1.E: Matter and Measurement (Exercises)
2. 2.E: Atoms, Molecules, and Ions (Exercises)
3. 3.E: Stoichiometry (Exercises)
4. 4.E: Aqueous Reactions (Exercises)
5. 5.E: Thermochemistry (Exercises)
6. 6.E: Electronic Structure (Exercises)
7. 7.E: Periodic Trends (Exercises)
8. 8.E: Chemical Bonding Basics (Exercises)
9. 9.E: Bonding Theories (Exercises)
10. 10.E: Gases (Exercises)
11. 11.E: Liquids and Intermolecular Forces (Exercises)
13. 13.E: Properties of Solutions (Exercises)
15. 15.E: Chemical Equilibrium (Exercises)
16. 16.E: Acid–Base Equilibria (Exercises)
17. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
18. 18.E: Chemistry of the Environment (Exercises)
19. 19.E: Chemical Thermodynamics (Exercises)
20. 20.E: Electrochemistry (Exercises)
21. 21.E: Nuclear Chemistry (Exercises)
22. 22.E: Chemistry of the Nonmetals (Exercises)
23. 23.E: Metals and Metallurgy (Exercises)
24. 24.E: Chemistry of Coordination Chemistry (Exercises)
25. 25.E: Organic and Biological Chemistry (Exercises)

These is a summary of key concepts of the chapter in the Textmap created for "Chemistry: The Central Science" by Brown et al.
13.1: The Solution Process

- interaction between solute and solvent molecules
- hydration – solvation when solvent is water

13.1.1 Energy Changes and Solution Formation

- overall enthalpy change in formation of a solution
 \[\Delta H_{\text{soln}} = \Delta H_1 + \Delta H_2 + \Delta H_3 \]
 - \(\Delta H_1 \) = separation of solute molecules
 - \(\Delta H_2 \) = separation of solvent molecules
 - \(\Delta H_3 \) = formation of solute-solvent interactions

- separation of solute particles is endothermic
- separation of solvent is endothermic
- third is exothermic
- formation of solution can be either exothermic or endothermic
- exothermic processes are spontaneous
- solution will not form if enthalpy is too endothermic
- \(H_3 \) has to be comparable to \(H_1 + H_2 \)
 - Ionic substances cannot dissolve in nonpolar liquids
 - Polar liquids do not form solutions with nonpolar liquids

13.1.2 Solution Formation, Spontaneity, and Disorder

- two nonpolar substances dissolve in one another
- attractive forces = London dispersion forces
- two factors in processes that are spontaneous: energy and disorder
- processes in which the energy content of the system decreases tend to occur spontaneously
 - exothermic
- processes in which the disorder of the system increases tend to occur spontaneously
- solutions will form unless solute-solute or solvent-solvent interactions too strong relative to solute-solvent interactions

13.1.3 Solution Formation and Chemical Reactions

- distinguish between physical process of solution formation from chemical process that leads to a solution

13.2: Saturated Solutions and Solubility

- crystallization – reverse process of solution
- dynamic equilibrium – when equilibrium exists between process of solution and crystallization
• solute said to be saturated
• **solvability** – amount of solute needed to saturate a solution
• **unsaturated** – when there isn’t enough solute to saturate a solution
• **supersaturated** – when there is more solute than needed to saturate a solution
• for most salts crystallization of excess solute is exothermic

13.3: Factors Affecting Solubility

Solute-Solvent Interactions

• solubility increases with increasing molar mass
• London dispersion forces increase with increasing size and mass of gas molecules
• **Miscible** – pairs of liquids that mix in all proportions
• **Immiscible** – opposite of miscible
• Hydrogen-bonding interactions between solute and solvent leads to high solubility
• Substances with similar intermolecular attractive forces tend to be soluble in one another
• "like dissolves like"

Pressure Effects

• solubility of a gas in any solvent increases as pressure of gas over solvent increases
• relationship between pressure and solubility: Henry’s Law:
 ◦ \(C_g = kP_g \)
 ◦ \(C_g \) solubility of gas in solution phase (usually expressed as molarity), \(P_g \) partial pressure of gas over solution, \(k \) is proportionality constant (Henry’s Law constant)
 ◦ Henry’s law constant different for each solute-solvent pair, and temperature

Temperature Effects

• solubility of most solid solutes in water increases as temperature of solution increase
• solubility of gases in water decreases with increasing temperature
• decreases solubility of \(O_2 \) in water as temperature increases in one the effects of thermal pollution

13.4: Ways of Expressing Concentration

• dilute and concentrated used to describe solution qualitatively
• mass percentage of component in solution:

\[
\text{mass\% of component} = \frac{\text{mass\ of\ component\ in\ soln}}{\text{total\ mass\ of\ soln}} \times 100\%
\]
very dilute solutions expressed in parts per million (ppm)

\[
\text{ppm of component} = \frac{\text{mass of component in soln}}{\text{total mass of soln}} \times 10^6
\]

- 1 ppm = 1g solute for each \((10^6)\) grams of solution or 1mg solute per kg solution
- 1ppm = 1mg solute/L solution
- 1 ppb = 1g of solute/10^9 grams of solution or 1 mg solute/ L of solution

13.4.1 Mole Fraction, Molarity, and Molality

\[
\text{mole fraction of component} = \frac{\text{moles of component}}{\text{total moles of all components}}
\]

- sum of mole fractions of all components of solution must equal one
- \(\text{molarity} = \frac{\text{moles solute}}{\text{liters soln}}\)
- \(\text{molality} = \frac{\text{moles solute}}{\text{kilograms of solvent}}\)
- molality goes not vary with temperature
- molarity changes with temperature because of expansion and contraction of solution

13.5: Colligative Properties

Colligative properties are physical properties that depend on quantity

Lowering the Vapor Pressure

- vapor pressure over pure solvent higher than that over solution
- vapor pressure needed to obtain equilibrium of pure solvent higher than that of solution

Raoult’s Law

- Raoult’s law: \((P_A = X_A P^\circ)\)
 - \(P_A\) = vapor pressure of solution, \(X_A\) = mole fraction of solvent, \(P^\circ\) = vapor pressure of the pure solvent
 - **Ideal solution** – solution that obeys Raoult’s law
 - Solute concentration is low, solute and solvent have similar molecular sizes and similar types of intermolecular attractions

Boiling-Point Elevation

- normal boiling point of pure liquid is the temperature at which pressure is 1 atm
- addition of a nonvolatile solute lowers vapor pressure of solution
- \((\Delta T_b=K_b m)\)
- \(K_b\) = molal boiling-point-elevation constant
 - Depends only on solvent
boiling point elevation proportional to number of solute particles present in given quantity of solution

Freezing-Point Depression

- Freezing point of solution is temperature at which the first crystals of pure solvent form in equilibrium.
- Freezing point of solution lower than pure liquid.
- Freezing point directly proportional to the molality of the solute:
 - $\Delta T_f = K_f m$
 - $K_f =$ molal freezing-point-depression constant

Osmosis

- **semipermeable** – membranes that allow passage of some molecules and not others
- **osmosis** – the net movement of solvent molecules from the less concentrated solution to the more concentrated solution
- Net movement of solvent always toward the solution with the higher solute concentration
- Osmotic pressure – pressure needed to prevent osmosis, p
 - $\pi = \left(\frac{n}{V}\right)RT = MRT$
 - $M =$ molarity of solution
- If solutions identical osmosis will not occur and said to be **isotonic**
- If one solution lower osmotic pressure = **hypotonic**, the solution that has higher osmotic pressure = **hypertonic**
- **crenation** = when cells shrivel up from the loss of water
- **hemolysis** = when cells rupture due to too much water

Determination of Molar Mass

- Colligative properties can be used to find molar mass

13.6: Colloids

Colloidal dispersions (colloids) are intermediate types of dispersions or suspensions

- Intermediate solutions between solutions and heterogeneous mixtures
- Colloids can be gases, liquids, or solids
- Colloid particles have size between 10 - 2000Å
- Tyndall effect – scattering of light by colloids

Hydrophilic and Hydrophobic Colloids

- **hydrophilic** – colloids in which the dispersion medium is water
- **hydrophobic** – colloids not dispersed in water
- Hydrophobic colloids have to be stabilized before being put in water
 - Natural lack of affinity for water causes separation
• can be stabilized by the adsorption of ions on the surface
• adsorbed ions interact with water
• can also be stabilized by presence of other hydrophilic groups on surface

Removal of Colloidal Particles

• coagulation – enlarging colloidal particles
 ◦ heating or adding an electrolyte to mixture
 ◦ heating increases number of collisions and particles stick together increasing their size
 ◦ electrolytes causes neutralization of the surface charges of the particles which remove the electrostatic repulsion
 ◦ dialysis – use of semipermeable membranes to filter out colloidal particles