Chapter 1: Introduction: Matter and Measurement

1. The Study of Chemistry
2. Classification of Matter
3. Properties of Matter
4. Units of Measurement
5. Uncertainty in Measurement
6. Dimensional Analysis
7. Matter and Measurement (Exercises)
8. Matter and Measurement (Summary)

Chapter 2: Atoms, Molecules, and Ions

1. The Atomic Theory of Matter
2. The Discovery of Atomic Structure
3. The Modern View of Atomic Structure
4. Atomic Mass
5. The Periodic Table
6. Molecules and Molecular Compounds
7. Ions and Ionic Compounds
8. Naming Inorganic Compounds
9. Some Simple Organic Compounds
10. Atoms, Molecules, and Ions (Exercises)
11. Atoms, Molecules, and Ions (Summary)

Chapter 3: Stoichiometry: Chemical Formulas and Equations

1. Chemical Equations
2. Some Simple Patterns of Chemical Reactivity
3. Formula Masses
4. Avogadro's Number and the Mole
5. Empirical Formulas from Analysis
6. Quantitative Information from Balanced Equations
7. Limiting Reactants
8. Stoichiometry (Exercises)
1. Chapter 4: Reactions in Aqueous Solution
2. 4.1: General Properties of Aqueous Solutions
3. 4.2: Precipitation Reactions
4. 4.3: Acid-Base Reactions
5. 4.4: Oxidation-Reduction Reactions
6. 4.5: Concentration of Solutions
7. 4.6: Solution Stoichiometry and Chemical Analysis
8. 4.E: Reactions in Aqueous Solution (Exercises)
9. 4.S: Reactions in Aqueous Solution (Summary)

1. Chapter 5: Thermochemistry
2. 5.1: The Nature of Energy
3. 5.2: The First Law of Thermodynamics
4. 5.3: Enthalpy
5. 5.4: Enthalpy of Reaction
6. 5.5: Calorimetry
7. 5.6: Hess’s Law
8. 5.7: Enthalpies of Formation
9. 5.8: Foods and Fuels
10. 5.E: Thermochemistry (Exercises)
11. 5.S: Thermochemistry (Summary)

1. Chapter 6: Electronic Structure of Atoms
2. 6.1: The Wave Nature of Light
3. 6.2: Quantized Energy and Photons
4. 6.3: Line Spectra and the Bohr Model
5. 6.4: The Wave Behavior of Matter
6. 6.5: Quantum Mechanics and Atomic Orbitals
7. 6.6: 3D Representation of Orbitals
8. 6.7: Many-Electron Atoms
9. 6.8: Electron Configurations
10. 6.9: Electron Configurations and the Periodic Table
11. 6.E: Electronic Structure of Atoms (Exercises)
12. 6.S: Electronic Structure of Atoms (Summary)
Chapter 7: Periodic Properties of the Elements

7.1: Development of the Periodic Table
7.2: Effective Nuclear Charge
7.3: Sizes of Atoms and Ions
7.4: Ionization Energy
7.5: Electron Affinities
7.6: Metals, Nonmetals, and Metalloids
7.7: Group Trends for the Active Metals
7.8: Group Trends for Selected Nonmetals

Chapter 8: Basic Concepts of Chemical Bonding

8.1: Chemical Bonds, Lewis Symbols, and the Octet Rule
8.2: Ionic Bonding
8.3: Covalent Bonding
8.4: Bond Polarity and Electronegativity
8.5: Drawing Lewis Structures
8.6: Resonance Structures
8.7: Exceptions to the Octet Rule
8.8: Strength of Covalent Bonds

Chapter 9: Molecular Geometry and Bonding Theories

9.1: Molecular Shapes
9.2: The VSEPR Model
9.3: Molecular Shape and Molecular Polarity
9.4: Covalent Bonding and Orbital Overlap
9.5: Hybrid Orbitals
9.6: Multiple Bonds
9.7: Molecular Orbitals
9.8: Second-Row Diatomic Molecules
9.9: Second-Row Diatomic Molecules (Exercises)
9.10: Second-Row Diatomic Molecules (Summary)
1. **Chapter 13: Properties of Solutions**
 2. **13.1: The Solution Process**
 3. **13.2: Saturated Solutions and Solubility**
 4. **13.3: Factors Affecting Solubility**
 5. **13.4: Ways of Expressing Concentration**
 6. **13.5: Colligative Properties**
 7. **13.6: Colloids**

10. **Chapter 14: Chemical Kinetics**
 11. **14.1: Factors that Affect Reaction Rates**
 12. **14.2: Reaction Rates**
 13. **14.3: Concentration and Rates (Differential Rate Laws)**
 15. **14.5: Temperature and Rate**
 16. **14.6: Reaction Mechanisms**
 17. **14.7: Catalysis**
 18. **14.E: Exercises**

20. **Chapter 15: Chemical Equilibrium**
 21. **15.1: The Concept of Equilibrium**
 22. **15.2: The Equilibrium Constant**
 23. **15.3: Interpreting & Working with Equilibrium Constants**
 24. **15.4: Heterogeneous Equilibria**
 25. **15.5: Calculating Equilibrium Constants**
 26. **15.6: Applications of Equilibrium Constants**
 27. **15.7: Le Châtelier's Principle**
 28. **15.E: Exercises**
 29. **15.S: Chemical Equilibrium (Summary)**

30. **Chapter 16: Acid–Base Equilibria**
 31. **16.1: Acids and Bases: A Brief Review**
 32. **16.2: Brønsted–Lowry Acids and Bases**
 33. **16.3: The Autoionization of Water**
5. 16.4: The pH Scale
6. 16.5: Strong Acids and Bases
7. 16.6: Weak Acids
8. 16.7: Weak Bases
9. 16.8: Relationship Between KaKa and KbKb
10. 16.9: Acid-Base Properties of Salt Solutions
11. 16.10: Acid-Base Behavior and Chemical Structure
12. 16.11: Lewis Acids and Bases
13. 16.E: Acid–Base Equilibria (Exercises)
14. 16.S: Acid–Base Equilibria (Summary)

• 17

1. Chapter 17: Additional Aspects of Aqueous Equilibria
 2. 17.1: The Common-Ion Effect
 3. 17.2: Buffered Solutions
 4. 17.3: Acid-Base Titrations
 5. 17.4: Solubility Equilibria
 6. 17.5: Factors that Affect Solubility
 7. 17.6: Precipitation and Separation of Ions
 8. 17.7: Qualitative Analysis for Metallic Elements
9. 17.E: Additional Aspects of Aqueous Equilibria (Exercises)
10. 17.S: Additional Aspects of Aqueous Equilibria (Summary)

• 18

1. Chapter 18: Chemistry of the Environment
 2. 18.1: Earth's Atmosphere
 3. 18.2: Outer Regions of the Atmosphere
 4. 18.3: Ozone in the Upper Atmosphere
 5. 18.4: Chemistry of the Troposphere
 6. 18.5: The World Ocean
 7. 18.6: Fresh Water
 8. 18.7: Green Chemistry
9. 18.E: Chemistry of the Environment (Exercises)

• 19

1. Chapter 19: Chemical Thermodynamics
 2. 19.1: Spontaneous Processes
 3. 19.2: Entropy and the Second Law of Thermodynamics
 4. 19.3: The Molecular Interpretation of Entropy
5. 19.4: Entropy Changes in Chemical Reactions
6. 19.5: Gibbs Free Energy
7. 19.6: Free Energy and Temperature
8. 19.7: Free Energy and the Equilibrium Constant
9. 19.E: Chemical Thermodynamics (Exercises)

• 20
1. Chapter 20: Electrochemistry
2. 20.1: Oxidation States & Redox Reactions
3. 20.2: Balanced Oxidation-Reduction Equations
4. 20.3: Voltaic Cells
5. 20.4: Cell Potential Under Standard Conditions
6. 20.5: Gibbs Energy and Redox Reactions
7. 20.6: Cell Potential Under Nonstandard Conditions
8. 20.7: Batteries and Fuel Cells
9. 20.8: Corrosion
10. 20.9: Electrolysis
11. 20.E: Electrochemistry (Exercises)

• 21
1. Chapter 21: Nuclear Chemistry
2. 21.1: Radioactivity
3. 21.2: Patterns of Nuclear Stability
4. 21.3: Nuclear Transmutations
5. 21.4: Rates of Radioactive Decay
6. 21.6: Energy Changes in Nuclear Reactions
7. 21.7: Nuclear Fission
8. 21.8: Nuclear Fusion
9. 21.9: Biological Effects of Radiation
10. 21.E: Exercises
11. 21.S: Nuclear Chemistry (Summary)

• 22
1. Chapter 22: Chemistry of the Nonmetals
2. 22.1: General Concepts: Periodic Trends and Reactions
3. 22.2: Hydrogen
4. 22.3: Group 18: Noble Gases
5. 22.4: Group 17: The Halogens
6. 22.5: Oxygen
7. 22.6: The Other Group 16 Elements: S, Se, Te, and Po
8. 22.7: Nitrogen
9. 22.8: The Other Group 15 Elements: P, As, Sb, and Bi
10. 22.9: Carbon
11. 22.10: The Other Group 14 Elements: Si, Ge, Sn, and Pb
12. 22.11: Boron
13. 22.E: Chemistry of the Nonmetals (Exercises)
14. 22.S: Chemistry of the Nonmetals (Summary)

- 23

1. Chapter 23: Metals and Metallurgy
2. 23.1: Occurance and Distribution of Metals
3. 23.2: Pyrometallurgy
4. 23.3: Hydrometallurgy
5. 23.4: Electrometallurgy
6. 23.5: Metallic Bonding
7. 23.6: Alloys
8. 23.7: Transition Metals
9. 23.8: Chemistry of Selected Transition Metals
10. 23.E: Metals and Metallurgy (Exercises)

- 24

1. Chapter 24: Chemistry of Coordination Chemistry
2. 24.1: Metal Complexes
3. 24.2: Ligands with more than one Donor Atom
4. 24.3: Nomenclature of Coordination Chemistry
5. 24.4: Isomerization
6. 24.5: Color and Magnetism
7. 24.6: Crystal Field Theory
8. 24.E: Chemistry of Coordination Chemistry (Exercises)

- 25

1. Chapter 25: Chemistry of Life: Organic and Biological Chemistry
2. 25.1: General Characteristics of Organic Molecules
3. 25.2: Introduction to Hydrocarbons
4. 25.3: Alkanes
5. 25.4: Unsaturated Hydrocarbons
6. 25.5: Functional Groups
7. 25.6: Compounds with a Carbonyl Group
8. **25.7: Chirality in Organic Chemistry**
9. **25.8: Introduction to Biochemistry**
10. **25.9: Proteins**
11. **25.10: Carbohydrates**
12. **25.11: Nucleic Acids**
13. **25.E: Organic and Biological Chemistry (Exercises)**
14. **25.S: Organic and Biological Chemistry (Summary)**

• **Homework**

1. **1.E: Matter and Measurement (Exercises)**
2. **2.E: Atoms, Molecules, and Ions (Exercises)**
3. **3.E: Stoichiometry (Exercises)**
4. **4.E: Aqueous Reactions (Exercises)**
5. **5.E: Thermochemistry (Exercises)**
8. **8.E: Chemical Bonding Basics (Exercises)**
10. **10.E: Gases (Exercises)**
11. **11.E: Liquids and Intermolecular Forces (Exercises)**
15. **15.E: Chemical Equilibrium (Exercises)**
17. **17.E: Additional Aspects of Aqueous Equilibria (Exercises)**
18. **18.E: Chemistry of the Environment (Exercises)**
19. **19.E: Chemical Thermodynamics (Exercises)**
22. **22.E: Chemistry of the Nonmetals (Exercises)**
23. **23.E: Metals and Metallurgy (Exercises)**
24. **24.E: Chemistry of Coordination Chemistry (Exercises)**
25. **25.E: Organic and Biological Chemistry (Exercises)**

These are homework exercises to accompany the Textmap created for "Chemistry: The Central Science" by Brown et al. Complementary General Chemistry question banks can be found for other Textmaps and can be accessed here. In addition to these publicly available questions, access to private problems bank for use in exams and homework is available to faculty only on an individual basis; please contact Delmar Larsen for an account with access permission.
16.1: Acids and Bases: A Brief Review

16.2: Brønsted–Lowry Acids and Bases

Conceptual Problems

1. Identify the conjugate acid–base pairs in each equilibrium.
 a. \(\text{HSO}^\cdot_{4}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{SO}^{2\cdot}_{4}(aq) + \text{H}_3\text{O}^+{(aq)}\)
 b. \(\text{C}_3\text{H}_7\text{NO}_2(aq) + \text{H}_3\text{O}^+{(aq)} \rightleftharpoons \text{C}_3\text{H}_8\text{NO}^+_{2}(aq) + \text{H}_2\text{O}(l)\)
 c. \(\text{CH}_3\text{O}_2\text{H}(aq) + \text{NH}_3(aq) \rightleftharpoons \text{CH}_3\text{CO}^\cdot_{2}(aq) + \text{NH}^+_{4}(aq)\)
 d. \(\text{SbF}_5(aq) + 2\text{HF}(aq) \rightleftharpoons \text{H}_2\text{F}^+(aq) + \text{SbF}^{\cdot}_{6}(aq)\)

2. Identify the conjugate acid–base pairs in each equilibrium.
 a. \(\text{HF}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_3\text{O}^+{(aq)} + \text{F}^-(aq)\)
 b. \(\text{CH}_3\text{CH}_2\text{NH}_2(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{CH}_3\text{CH}_2\text{NH}^+_{3}(aq) + \text{OH}^-(aq)\)
 c. \(\text{C}_3\text{H}_7\text{NO}_2(aq) + \text{OH}^-(aq) \rightleftharpoons \text{C}_3\text{H}_6\text{NO}^\cdot_{2}(aq) + \text{H}_2\text{O}(l)\)
 d. \(\text{CH}_3\text{CO}_2\text{H}(aq) + 2\text{HF}(aq) \rightleftharpoons \text{CH}_3\text{C(OH)}^\cdot_{2}(aq) + \text{HF}^{\cdot}_{2}(aq)\)

3. Salts such as NaH contain the hydride ion \(\text{H}^\cdot\). When sodium hydride is added to water, it produces hydrogen gas in a highly vigorous reaction. Write a balanced chemical equation for this reaction and identify the conjugate acid–base pairs.

4. Write the expression for \(K_a\) for each reaction.
 a. \(\text{HCO}^\cdot_{3}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{CO}^{2\cdot}_{3}(aq) + \text{H}_3\text{O}^+{(aq)}\)
 b. \(\text{formic acid}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{formate}(aq) + \text{H}_3\text{O}^+(aq)\)
 c. \(\text{H}_3\text{PO}_4(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_2\text{PO}^\cdot_{4}(aq) + \text{H}_3\text{O}^+(aq)\)

5. Write an expression for the ionization constant \(K_b\) for each reaction.
 a. \(\text{OCH}^\cdot_{3}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{HOCH}_{3}(aq) + \text{OH}^-(aq)\)
 b. \(\text{NH}^\cdot_{2}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NH}_{3}(aq) + \text{OH}^-(aq)\)
 c. \(\text{S}^\cdot_{2}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{HS}^\cdot(\text{aq}) + \text{OH}^-(\text{aq})\)

6. Predict whether each equilibrium lies primarily to the left or to the right.
 a. \(\text{HBr}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_3\text{O}^+{(aq)} + \text{Br}^-(aq)\)
 b. \(\text{NaH}(s) + \text{NH}_3(aq) \rightleftharpoons \text{H}_2(g) + \text{NaNH}_2(s)\)
 c. \(\text{OCH}^\cdot_{3}(aq) + \text{NH}_3(aq) \rightleftharpoons \text{CH}_3\text{OH}(aq) + \text{NH}^\cdot_{2}(aq)\)
 d. \(\text{NH}_3(aq) + \text{HCl}(aq) \rightleftharpoons \text{NH}^\cdot_{4}(aq) + \text{Cl}^-(aq)\)

7. Species that are strong bases in water, such as \(\text{CH}_3^\cdot\), \(\text{NH}_2^\cdot\), and \(\text{S}^\cdot_{2}\), are leveled to the strength of \(\text{OH}^\cdot\), the conjugate base of \(\text{H}_2\text{O}\). Because their relative base strengths are indistinguishable in water, suggest a method for identifying which is the strongest base. How would you distinguish between the strength of the acids \(\text{HO}^\cdot(\text{OH}_3)\), \(\text{H}_2\text{SO}_4(\text{aq})\), and \(\text{HClO}_4(\text{aq})\)?

8. Is it accurate to say that a 2.0 M solution of \(\text{H}_2\text{SO}_4\), which contains two acidic protons per molecule, is 4.0 M in \(\text{H}^+(aq)\)? Explain your answer.
9. The alkalinity of soil is defined by the following equation: alkalinity = \([HCO_3^-] + 2[CO_3^{2-}] + [OH^-] - [H^+]\). The source of both \([HCO_3^-]\) and \([CO_3^{2-}\) is \([H_2CO_3]\). Explain why the basicity of soil is defined in this way.

10. Why are aqueous solutions of salts such as \([CaCl_2]\) neutral? Why is an aqueous solution of \([NaNH_2]\) basic?

11. Predict whether the aqueous solutions of the following are acidic, basic, or neutral.
 a. \([Li_3N]\)
 b. \([NaH]\)
 c. \([KBr]\)
 d. \([C_2H_5NH_3Cl]\)

12. When each compound is added to water, would you expect the \((pH)\) of the solution to increase, decrease, or remain the same?
 a. \([LiCH_3]\)
 b. \([MgCl_2]\)
 c. \([K_2O]\)
 d. \([C_3H_3_2NH_2^+Br__^-]\)

13. Which complex ion would you expect to be more acidic: \([Pb(H_2O)_4^{2+}]\) or \([Sn(H_2O)_4^{2+}]\)? Why?

14. Would you expect \([Sn(H_2O)_4^{2+}]\) or \([Sn(H_2O)_6^{4+}]\) to be more acidic in aqueous solutions? Why?

15. Is it possible to arrange the hydrides \([LiH]\), \([RbH]\), \([KH]\), \([CsH]\), and \([NaH]\) in order of increasing base strength in aqueous solution? Why or why not?

Conceptual Answer

1. a. \([\text{acid}]\) \(HSO^−_{4}(aq) + \text{base} \rightarrow \text{conjugate base} \cdot SO^{2−}_{4}(aq) + \text{conjugate acid} \cdot H_3O^+(aq)\)

 b. \([\text{base}]\) \(C_3H_7NO_{2}(aq) + \text{acid} \rightarrow \text{conjugate acid} \cdot C_3H_8NO^+_{2}(aq) + \text{conjugate base} \cdot H_2O(l)\)

 c. \([\text{acid}]\) \(HOAc\cdot(aq) + \text{base} \rightarrow \text{conjugate base} \cdot CH_3CO^−_{2}(aq) + \text{conjugate acid} \cdot NH^+_{4}(aq)\)

 d. \([\text{acid}]\) \(SbF_{5}(aq) + \text{base} \rightarrow \text{conjugate acid} \cdot H_2F^+(aq) + \text{conjugate base} \cdot SbF_6^−(aq)\)

2. a. \([\text{acid}]\) \(HF\cdot(aq) + \text{base} \rightarrow \text{conjugate acid} \cdot H_3O^+(aq) + \text{conjugate base} \cdot F^−(aq)\)

 b. \([\text{base}]\) \(CH_{3}CH_{2}NH_{2}\cdot(aq) + \text{acid} \rightarrow \text{conjugate acid} \cdot CH_{3}CH_{2}NH_{3}^{+}(aq) + \text{conjugate base} \cdot OH^−(aq)\)
3. \[
\underset{\text{base}}{NaH\,(s)} + \underset{\text{acid}}{H_{2}O\,(l)} \rightleftharpoons \underset{\text{conjugate acid}}{H_{2}\,(g)} + \underset{\text{conjugate base}}{NaOH\,(aq)}
\]

4.

a. \[
K_a=\frac{[CO_{3}^{2-}][H_{3}O^{+}]}{[HCO_{3}^{-}]}
\]

b. \[
K_a=\frac{[formate][H_{3}O^{+}]}{[formic\,acid]}
\]

c. \[
K_a=\frac{[H_{2}PO_{4}^{-}][H_{3}O^{+}]}{[H_{3}PO_{4}]}
\]

5.

a. \[
K_b=\frac{[CO_{3}^{2-}][H_{3}O^{+}]}{[HCO_{3}^{-}]}
\]

b. \[
K_b=\frac{[NH_{3}][OH^{-}]}{[NH_{2}^{-}]}
\]

c. \[
K_b=\frac{[HS^{-}][OH^{-}]}{[S^{2-}]}
\]

6. Strong acids have the smaller \(pK_a\).

a. Equilibrium lies primarily to the right because \(HBr\) \((pK_a=-8.7)\) is a stronger acid than \(H_{2}O\) \((pK_a=14)\) and \(Br^-\) \((pK_a=-8.7)\) is a stronger base than \(HBr\) \((pK_a=-8.7)\).

b. Equilibrium lies primarily to the left because \(H_{2}O\) \((pK_a=14)\) is a stronger acid than \(NH_{3}\) \((pK_a=38)\) and \(NH_{2}^-\) \((pK_a=38)\) is a stronger base than \(NH_{3}\) \((pK_a=38)\).

c. Equilibrium lies primarily to the left because \(CH_{3}OH\) \((pK_a=17)\) is a stronger acid than \(H_{2}SO_{4}\) \((pK_a=38)\) and \(H_{2}SO_{4}\) \((pK_a=38)\) is a stronger base than \(CH_{3}OH\) \((pK_a=17)\).

d. Equilibrium lies to the right because \(HCl\) \((pK_a=-7)\) is a stronger acid than \(NH_{4}^{+}\) \((pK_a=9.3)\) and \(Cl^-\) \((pK_a=-7)\) is a stronger base than \(NH_{4}^{+}\) \((pK_a=9.3)\).

7. To identify the strongest base we can determine their weakest conjugate acid. The conjugate acids of \(CH_{3}^{+}\), \(NH_{2}^{+}\), and \(S^{2-}\) are \(CH_{4}\), \(NH_{3}\), and \(HS^{-}\), respectively. Next, we consider that acidity increases with positive charge on the molecule, thus ruling out that \(S^{2-}\) is the weakest base. Finally, we consider that acidity increases with electronegativity, therefore \(NH_{3}\) is the second most basic and \(CH_{4}\) is the most basic. To distinguish between the strength of the acids \(HIO_{3}\), \(H_{2}SO_{4}\), and \(HClO_{4}\) we can consider that the higher electronegativity and oxidation state of the central nonmetal is the more acidic, therefore the order of acidity is: \(HIO_{3}\) \((S^{2-})\) \(<\(H_{2}SO_{4}\) \((Cl^{2-})\) \(<\(HClO_{4}\) because electronegativity and oxidation state increases as follows: \((S^{2-})\) \(<\(Cl^{2-}\).
8. It is not accurate to say that a 2.0 M solution of H_2SO_4, which contains two acidic protons per molecule, is 4.0 M in $H^+\text{)}$ because a 2.0 M solution of H_2SO_4 is equivalent to 4.0 N in $H^+\text{)}$.

\[
\left(\text{frac}(2.0,\text{mol}\cdot H_2SO_4)\right)\cdot\left(\text{frac}(2,\text{eq}\cdot H^+)\right)=\text{frac}4,\text{eq}\cdot H^+)\text{(L)}=4\text{N},H^+\text{)}
\]

9. Alkalinity is a measure of acid neutralizing capability. The basicity of the soil is defined this way because bases such as HCO_3^- and CO_3^{2-} can neutralize acids in soil. Because most soil has a pH between 6 and 8, alkalinity can be estimated by its carbonate species alone. At a near neutral pH, most carbonate species are bicarbonate.

10. Aqueous solutions of salts such as $(CaCl_2)$ are neutral because it is created from hydrochloric acid (a strong acid) and calcium hydroxide (a strong base). An aqueous solution of $(NaNH_2)$ is basic because it can deprotonate alkenes, alcohols, and a host of other functional groups with acidic protons such as esters and ketones.

11.

a. (Li_3N) is a base because the lone pair on the nitrogen can accept a proton.

b. (NaH) is a base because the hydrogen has a negative charge.

c. (KBr) is neutral because it is formed from (KOH) (a strong acid) and (KOH) (a strong base).

d. $(C_2H_5NH_3Cl)$ is acidic because it can donate a proton.

12.

a. The pH is expected to increase. $(\text{under}\text{text}{acid})\text{LtCH}_3\text{(aq)}+\text{under}{base}\text{H}_2\text{O}(l)\text{rightleflharpoo}{conjugate base}\text{OH}(aq)+\text{under}{conjugate acid}\text{CH}_4(aq)$

b. The pH is expected to increase. $(\text{under}{acid})\text{MgCl}_2(aq)+\text{under}{base}\text{H}_2\text{O}(l)\text{rightleflharpoo}{conjugate acid}\text{HCl}(aq)+\text{under}{conjugate base}\text{MgO}(aq)$

c. The pH is expected to remain the same. $(K_2O(aq)+H_2O(l)\text{rightleflharpoo}2\text{KOH}(aq))$

d. The pH is expected to increase. $(\text{under}{acid})\text{(CH}_3\text{)_2NH}_2\text{Br}(aq)+\text{under}{base}\text{H}_2\text{O}(l)\text{rightleflharpoo}{conjugate acid}\text{H}_3\text{O}^+(aq)+\text{under}{conjugate base}\text{(CH}_3\text{)_2NH}(aq))$

13. $(Sn(H_2O)_4^{2+})$ is expected to be more acidic than $(Pb(H_2O)_4^{2+})$ because (Sn) is more electronegative than (Pb).

14. $(Sn(H_2O)_6^{4+})$ is expected to be more acidic than $(Sn(H_2O)_4^{2+})$ because the charge on (Sn) is greater ($(4^{+}>2^{+})$).

15. Yes, it is possible the order of increasing base strength is: $(LiH<NaH<RbH<CsH)$ because increasing base strength is dependent on decreasing electronegativity.
Numerical Problems

1. Arrange these acids in order of increasing strength.
 - acid A: $pK_a = 1.52$
 - acid B: $pK_a = 6.93$
 - acid C: $pK_a = 3.86$

 Given solutions with the same initial concentration of each acid, which would have the highest percent ionization?

2. Arrange these bases in order of increasing strength:
 - base A: $pK_b = 13.10$
 - base B: $pK_b = 8.74$
 - base C: $pK_b = 11.87$

 Given solutions with the same initial concentration of each base, which would have the highest percent ionization?

3. Calculate the K_a and the pK_a of the conjugate acid of a base with each pK_b value.
 a. 3.80
 b. 7.90
 c. 13.70
 d. 1.40
 e. -2.50

4. Benzoic acid is a food preservative with a pK_a of 4.20. Determine the K_b and the pK_b for the benzoate ion.

5. Determine K_a and pK_a of boric acid $[B(OH)_3]$, solutions of which are occasionally used as an eyewash; the pK_b of its conjugate base is 4.80.

Numerical Answers

1. Acids in order of increasing strength: (acid B < acid C < acid A). Given the same initial concentration of each acid, the highest percent of ionization is acid A because it is the strongest acid.

2. Bases in order of increasing strength: (base A < base C < base B). Given the solutions with the same initial concentration of each base, the higher percent of ionization is base A because it is the weakest base.

3.
 a.
 $(pK_a + pK_b = 14 \rightarrow pK_a = 14 - pK_b = 14 - 3.80 = 10.2)$

 $(K_a = 10^{10.2} = 6.31 \times 10^{-11})$
b. \(pK_a + pK_b = 14 \rightarrow pK_a = 14 - pK_b = 14 - 7.90 = 6.10 \)
\(K_a = 10^{-pK_a} = 10^{-6.10} = 7.94 \times 10^{-7} \)

c. \(pK_a + pK_b = 14 \rightarrow pK_a = 14 - pK_b = 14 - 7.90 = 3.000 \times 10^{-1} \)
\(K_a = 10^{-pK_a} = 10^{-3.000 \times 10^{-1}} = -5.012 \times 10^{-1} \)

d. \(pK_a + pK_b = 14 \rightarrow pK_a = 14 - pK_b = 14 - 1.40 = 12.6 \)
\(K_a = 10^{-pK_a} = 10^{-12.6} = 2.51 \times 10^{-13} \)

e. \(pK_a + pK_b = 14 \rightarrow pK_a = 14 - pK_b = 14 - 7.90 = 16.5 \)
\(K_a = 10^{-pK_a} = 10^{-16.5} = 3.16 \times 10^{-17} \)

4. \(pK_a + pK_b = 14 \rightarrow pK_b = 14 - pK_a = 14 - 4.20 = 9.80 \)
\(K_b = 10^{-pK_b} = 10^{-9.80} = 1.58 \times 10^{-10} \)

5. \(pK_a + pK_b = 14 \rightarrow pK_a = 14 - pK_b = 14 - 4.80 = 9.20 \)
\(K_a = 10^{-pK_a} = 10^{-9.20} = 6.31 \times 10^{-10} \)

16.3: The Autoionization of Water

Conceptual Problems

1. What is the relationship between the value of the equilibrium constant for the autoionization of liquid water and the tabulated value of the ion-product constant of liquid water \((K_w) \)?

2. The density of liquid water decreases as the temperature increases from 25°C to 50°C. Will this effect cause \((K_w) \) to increase or decrease? Why?

3. Show that water is amphiprotic by writing balanced chemical equations for the reactions of water with \((HNO_3) \) and \((NH_3) \). In which reaction does water act as the acid? In which does it act as the base?

4. Write a chemical equation for each of the following.
 a. Nitric acid is added to water.
b. Potassium hydroxide is added to water.
c. Calcium hydroxide is added to water.
d. Sulfuric acid is added to water.

5. Show that \(K\) for the sum of the following reactions is equal to \(K_w\).

\[
\begin{align*}
\text{HMnO}_4\text{(aq)} & \rightleftharpoons H^+(\text{aq}) + \text{MnO}^{4-}\text{(aq)} \\
\text{MnO}^{4-}\text{(aq)} + \text{H}_2\text{O}\text{(l)} & \rightarrow \text{HMnO}_4\text{(aq)} + \text{OH}^-\text{(aq)}
\end{align*}
\]

Conceptual Answers

1. \[
[K_{\text{auto}} = \dfrac{[H_3O^+][OH^-]}{[H_2O]^2}]
\]
\[
[K_w = [H_3O^+][OH^-] = K_{\text{auto}}[H_2O]^2]
\]

2. This will affect \(K_w\) as it is dependent on temperature. As the temperature increases, an endothermic process occurs (energy must be absorbed to break the bonds). Consequently, according to Le Chatelier, an increase in temperature favors the forward reaction thus the position of equilibrium shifts toward the right-hand side and \(K_w\) becomes larger.

3. Water acts as the base: \[
\text{H}_2\text{O}\text{(l)} + \text{HNO}_3\text{(g)} \rightarrow H_3\text{O}^+\text{(aq)} + \text{NO}^{3-}\text{(aq)}
\]
Water acts as the acid: \[
\text{H}_2\text{O}\text{(l)} + \text{NH}_3\text{(g)} \rightarrow \text{OH}^-\text{(aq)} + \text{NH}^{4+}\text{(aq)}
\]

4.

a. \[
\text{HNO}_3\text{(aq)} + \text{H}_2\text{O}\text{(l)} \rightleftharpoons H_3\text{O}^+\text{(aq)} + \text{HNO}_3\text{^{-}(aq)}
\]

b. \[
\text{KOH}\text{(s)} + \text{H}_2\text{O}\text{(l)} \rightleftharpoons K^-\text{(aq)} + \text{OH}^-\text{(aq)}
\]

c. \[
\text{Ca(OH)}_2\text{(s)} + \text{H}_2\text{O}\text{(l)} \rightleftharpoons \text{Ca}^{2+}\text{(aq)} + 2\text{OH}^-\text{(aq)}
\]

d. \[
\text{H}_2\text{SO}_4\text{(aq)} + \text{H}_2\text{O}\text{(l)} \rightleftharpoons \text{HSO}_4^-\text{(aq)} + \text{H}^+\text{(aq)}
\]

5. \[
\text{H}_2\text{O}\text{(l)} \rightleftharpoons H^+\text{(aq)} + \text{OH}^-\text{(aq)}
\]
\[
K_w = [H^+][OH^-]
\]

Numerical Problems

1. The autoionization of sulfuric acid can be described by the following chemical equation:
\[
\text{H}_2\text{SO}_4\text{(l)} + \text{H}_2\text{SO}_4\text{(aq)} \rightleftharpoons \text{H}_3\text{SO}_4^-\text{(aq)} + \text{HSO}_4^-\text{(aq)}
\]
At 25°C, \(K = 3 \times 10^{-4}\). Write an equilibrium constant expression for \(K_{\text{H}_2\text{SO}_4}\) that is analogous to \(K_w\). The density of \(\text{H}_2\text{SO}_4\text{(aq)}\) is \(1.8\text{frac(gcm^3)}\) at 25°C. What is the concentration of \(\text{H}_3\text{SO}_4^-\text{(aq)}\)? What fraction of \(\text{H}_2\text{SO}_4\text{(aq)}\) is ionized?
2. An aqueous solution of a substance is found to have \([H_3O]^+ = 2.48 \times 10^{-8}; M\). Is the solution acidic, neutral, or basic?

3. The pH of a solution is 5.63. What is its pOH? What is the \([OH^-]\)? Is the solution acidic or basic?

4. State whether each solution is acidic, neutral, or basic.
 a. \(\{[H_3O]^+ = 8.6 \times 10^{-3}; M\}\)
 b. \(\{[H_3O]^+ = 3.7 \times 10^{-9}; M\}\)
 c. \(\{[H_3O]^+ = 2.1 \times 10^{-7}; M\}\)
 d. \(\{[H_3O]^+ = 1.4 \times 10^{-6}; M\}\)

5. Calculate the pH and the pOH of each solution.
 a. 0.15 \(\{M, HBr\}\)
 b. 0.03 \(\{M, KOH\}\)
 c. \(\{2.3 \times 10^{-3}; M, HNO_3\}\)
 d. \(\{9.78 \times 10^{-2}; M, NaOH\}\)
 e. 0.00017 \(\{M, HCl\}\)
 f. 5.78 \(\{M, HI\}\)

6. Calculate the pH and the pOH of each solution.
 a. 25.0 mL of \(2.3 \times 10^{-2}; M, HCl\), diluted to 100 mL
 b. 5.0 mL of \(1.87, M, NaOH\), diluted to 125 mL
 c. 5.0 mL of \(5.98, M, HCl\) added to 100 mL of water
 d. 25.0 mL of \(3.7, M, HNO_3\) added to 250 mL of water
 e. 35.0 mL of \(0.046, M, HI\) added to 500 mL of water
 f. 15.0 mL of \(0.0087, M, KOH\) added to 250 mL of water.

7. The pH of stomach acid is approximately 1.5. What is the \([H^+]\)?

8. Given the pH values in parentheses, what is the \([H^+]\) of each solution?
 a. household bleach (11.4)
 b. milk (6.5)
 c. orange juice (3.5)
 d. seawater (8.5)
 e. tomato juice (4.2)

9. A reaction requires the addition of 250.0 mL of a solution with a pH of 3.50. What mass of HCl (in milligrams) must be dissolved in 250 mL of water to produce a solution with this pH?

10. If you require 333 mL of a pH 12.50 solution, how would you prepare it using a 0.500 M sodium hydroxide stock solution?

Numerical Answers

1.

\[[K_\{H_2SO_4\}]=[H_3SO_4_4^+][HSO_4^-]=K[H_2SO_4_2^+] \]
\([H_3SO_4^{+}] = 0.3\) M

So the fraction ionized is 0.02.

2. The solution is basic because the \(pH = -\log([H_3O^+] +) = -\log(2.48 \times 10^{-8}) = 7.61 > 7\).

3. \(pH + pOH = 14 \rightarrow pOH = 14 - pH = 14 - 5.63 = 8.37\)

\([OH^-] = 10^{-pOH} = 10^{-4.27} \times 10^{-9}\)

The \(pH = 5.63 < 7\), therefore the solution is acidic.

4.

a. The solution is acidic. \(pH = -\log([H_3O^+] +) = -\log(8.6 \times 10^{-3}) = 2.1 < 7\)

b. The solution is basic. \(pH = -\log([H_3O^+] +) = -\log(3.7 \times 10^{-9}) = 8.4 > 7\)

c. The solution is acidic. \(pH = -\log([H_3O^+] +) = -\log(2.1 \times 10^{-7}) = 6.7 < 7\)

d. The solution is acidic. \(pH = -\log([H_3O^+] +) = -\log(1.4 \times 10^{-6}) = 5.9 < 7\)

5.

a.

\(pH = -\log([H_3O^+] +) = -\log(0.15) = 0.82\)

\(pH + pOH = 14 \rightarrow pOH = 14 - pH = 14 - 0.82 = 13\)

b.

\(pOH = -\log([OH^-] +) = -\log(0.03) = 2\)

\(pH + pOH = 14 \rightarrow pH = 14 - pOH = 14 - 2 = 12\)

c.

\(pH = -\log([H_3O^+] +) = -\log(2.3 \times 10^{-3}) = 2.6\)

\(pH + pOH = 14 \rightarrow pOH = 14 - pH = 14 - 2.6 = 11\)

d.

\(pOH = -\log([OH^-] +) = -\log(9.78 \times 10^{-2}) = 1.01\)

\(pH + pOH = 14 \rightarrow pH = 14 - pOH = 14 - 1.01 = 13\)
e. \[\begin{align*}
\text{pH} &= -\log([\text{H}_3\text{O}^+]) = -\log(0.00017) = 3.8 \\
\text{pH} + \text{pOH} &= 14 \Rightarrow \text{pOH} = 14 - \text{pH} = 14 - 3.8 = 10
\end{align*} \]

f. \[\begin{align*}
\text{pH} &= -\log([\text{H}_3\text{O}^+]) = -\log(5.78) = -0.762 \\
\text{pH} + \text{pOH} &= 14 \Rightarrow \text{pOH} = 14 - \text{pH} = 14 - (-0.762) = 14.8
\end{align*} \]

6. a. \[\begin{align*}
25.0 \text{ mL} & \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{2.3 \times 10^{-2} \text{ mol}}{1 \text{ L}} \times \frac{1}{100 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 0.060 \text{ M HCl} \\
\text{pH} &= -\log([\text{H}_3\text{O}^+]) = -\log(0.060) = 1.22 \\
\text{pH} + \text{pOH} &= 14 \Rightarrow \text{pOH} = 14 - \text{pH} = 14 - 1.22 = 12.78
\end{align*} \]

b. \[\begin{align*}
5.0 \text{ mL} & \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{1.87 \text{ mol}}{1 \text{ L}} \times \frac{1}{125 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 7.5 \times 10^{-2} \text{ M NaOH} \\
\text{pOH} &= -\log([\text{OH}^-]) = -\log(7.5 \times 10^{-2}) = 1.1 \\
\text{pH} + \text{pOH} &= 14 \Rightarrow \text{pH} = 14 - \text{pOH} = 14 - 1.1 = 12.9
\end{align*} \]

c. \[\begin{align*}
5.0 \text{ mL} & \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{5.98 \text{ mol}}{1 \text{ L}} \times \frac{1}{100 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 0.20 \text{ M HCl} \\
\text{pH} &= -\log([\text{H}_3\text{O}^+]) = -\log(0.20) = 0.70 \\
\text{pH} + \text{pOH} &= 14 \Rightarrow \text{pOH} = 14 - \text{pH} = 14 - 0.70 = 13.3
\end{align*} \]

d. \[\begin{align*}
25.0 \text{ mL} & \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{3.7 \text{ mol}}{1 \text{ L}} \times \frac{1}{250 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 0.370 \text{ M HNO}_3 \\
\text{pH} &= -\log([\text{H}_3\text{O}^+]) = -\log(0.370) = 0.432 \\
\text{pH} + \text{pOH} &= 14 \Rightarrow \text{pOH} = 14 - \text{pH} = 14 - 0.432 = 13.568
\end{align*} \]

e. \[\begin{align*}
35.0 \text{ mL} & \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{0.046 \text{ mol}}{1 \text{ L}} \times \frac{1}{500 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 3 \times 10^{-3} \text{ M HI} \\
\text{pH} &= -\log([\text{H}_3\text{O}^+]) = -\log(3 \times 10^{-3}) = 2.52 \\
\text{pH} + \text{pOH} &= 14 \Rightarrow \text{pOH} = 14 - \text{pH} = 14 - 2.52 = 11.48
\end{align*} \]
f. \((15.0 \text{ mL}) \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{0.0087 \text{ mol}}{1 \text{ L}} \times \frac{1}{125 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 5.20 \times 10^{-4} \text{ M KOH} \)

\(\text{pOH} = -\log([OH^-]) = -\log(5.20 \times 10^{-4}) = 3.28 \)

\(\text{pH} + \text{pOH} = 14 \rightarrow \text{pH} = 14 - 3.28 = 10.72 \)

7. \([H^+] = 10^\text{pH} = 10^{-1.5} = 3.2 \times 10^{-2} \text{ M} \)

8.

a. \([H^+] = 10^{-11.4} = 3.98 \times 10^{-12} \text{ M} \)

b. \([H^+] = 10^{-6.5} = 3.2 \times 10^{-7} \text{ M} \)

c. \([H^+] = 10^{-3.5} = 3.2 \times 10^{-4} \text{ M} \)

d. \([H^+] = 10^{-8.5} = 3.2 \times 10^{-9} \text{ M} \)

e. \([H^+] = 10^{-4.2} = 6.3 \times 10^{-5} \text{ M} \)

9. 2.9 mg \([HCl] \)

\([H^+] = 10^{\text{pH}} = 10^{-3.50} = 3.1622 \times 10^{-4} \text{ M} \)

\(\text{mg} \text{ HCl} \times \frac{1 \text{ g HCl}}{1000 \text{ mg HCl}} \times \frac{1 \text{ mol HCl}}{36.46 \text{ g HCl}} \times \frac{1}{250 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 3.1622 \times 10^{-4} \text{ M HCl} \)

\(\rightarrow \frac{\text{mol HCl}}{9115 \text{ L HCl}} = 3.1622 \times 10^{-4} \text{ M HCl} \rightarrow x = 2.9 \text{ mol HCl} \rightarrow x = 2.9 \)

10. To prepare the stock solution, \((2.11 \times 10^{-2} \text{ L}) \) of \((0.500 \text{ M}, \text{NaOH}) \) solution is required.

\(\text{mg} \text{ NaOH} \times \frac{1 \text{ g NaOH}}{1000 \text{ mg NaOH}} \times \frac{1 \text{ mol NaOH}}{0.333 \text{ g} \times 2.11 \times \frac{1 \text{ L}}{10^\text{pH}} = 10^{-1.5} = 0.03162 \text{ M} \)

\(\text{pH} + \text{pOH} = 14 \rightarrow \text{pOH} = 14 - 12.50 = 1.5 \)
Concentual Problems

1. Several factors affect the relative strengths of acids and bases. For each pair, identify the most important factor in determining which is the stronger acid or base in aqueous solution.
 a. \(\text{CH}_3\text{CCl}_2\text{CH}_2\text{CO}_2\text{H}\) versus \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CO}_2\text{H}\)
 b. \(\text{CH}_3\text{CO}_2\text{H}\) versus \(\text{CH}_3\text{CH}_2\text{OH}\)
 c. \(\text{HClO}\) versus \(\text{HBrO}\)
 d. \(\text{ice(\text{CH}_3\text{C}(=\text{O})\text{NH}_2)}\) versus \(\text{CH}_3\text{CH}_2\text{NH}_2\)
 e. \(\text{H}_3\text{AsO}_4\) versus \(\text{H}_3\text{AsO}_3\)

2. The stability of the conjugate base is an important factor in determining the strength of an acid. Which would you expect to be the stronger acid in aqueous solution—\((\text{C}_6\text{H}_5\text{NH}_3^{\text{+}})\) or \((\text{NH}_4^{\text{+}})\)? Justify your reasoning.

3. Explain why \(\text{H}_2\text{Se}\) is a weaker acid than \(\text{HBr}\).

4. Arrange the following in order of decreasing acid strength in aqueous solution: \(\text{H}_3\text{PO}_4\), \(\text{CH}_3\text{PO}_3\text{H}_2\), and \(\text{HClO}_3\).

5. Arrange the following in order of increasing base strength in aqueous solution: \(\text{ice(\text{CH}_3\text{S}^-)}\), \(\text{OH}^-\), and \(\text{CF}_3\text{S}^-\).

6. Arrange the following in order of increasing acid strength in aqueous solution: \(\text{HClO}_2\), \(\text{HNO}_2\), and \(\text{HNO}_3\).

7. Do you expect \(\text{H}_2\text{SO}_3\) or \(\text{H}_2\text{SeO}_3\) to be the stronger acid? Why?

8. Give a plausible explanation for why \(\text{H}_3\text{O}\text{H}_3\) is a stronger acid than \(\text{H}_3\text{O}\text{H}_1\) in aqueous solution. Do you
expect \(\text{CHCl}_2\text{CH}_2\text{OH}\) to be a stronger or a weaker acid than \(\text{CH}_3\text{OH}\)? Why?

9. Do you expect \(\text{Cl}_2\text{NH}\) or \(\text{NH}_3\) to be the stronger base in aqueous solution? Why?

Conceptual Answers

1.

a. The most important factor in determining the stronger acid is considering the inductive effect. Chlorine is an electron-withdrawing group. It pulls electron density away from the compound by means of the inductive effect through the sigma bond. In considering the conjugate base of \(\text{CH}_3\text{CCl}_2\text{CH}_2\text{CO}_2\text{H}\), Chlorine absorbs some of the electron density or excess negative charge on the oxygen atom. This causes the C bonded to the attached Chlorine atoms to be partially positive. The conjugate base of \(\text{CH}_3\text{CCl}_2\text{CH}_2\text{CO}_2\text{H}\) is more stable, thus more acidic than the conjugate base of \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CO}_2\text{H}\).

 b. The most important factor in determining the stronger acid is knowing the \(pK_a\) values for functional groups. The \(pK_a\) of alcohol is about 16 while the \(pK_a\) of a carboxylic acid is about 5. Therefore, \(\text{CH}_3\text{CO}_2\text{H}\) is more acidic than \(\text{CH}_3\text{CH}_2\text{OH}\).

 c. The most important factor in determining the stronger acid is electronegativity. The chlorine atom is more electronegative than the bromine atom, therefore \(\text{HClO}\) is more acidic than \(\text{HBrO}\).

 d. The most important factor in determining the stronger acid is considering resonance. The \(\text{CH}_3\text{C}(=\text{O})\text{NH}_2\) has a resonance which increases the stability of the conjugate base (therefore increasing acidity) because the negative charge can be delocalized. Thus, \(\text{CH}_3\text{C}(=\text{O})\text{NH}_2\) is more acidic than \(\text{CH}_3\text{CH}_2\text{NH}_2\).

 e. The most important factor in determining the stronger acid is considering oxidation states on the central nonmetal. \(\text{H}_3\text{AsO}_4\) has an oxidation state of +5 which is larger and thus more acidic than \(\text{H}_3\text{AsO}_3\) which has an oxidation state of +3.

2. \(\text{CF}_3\text{S}^- < \text{CH}_3\text{S}^- < \text{OH}^-\) (strongest base)

3. \(\text{H}_2\text{Se}\) is a weaker acid than \(\text{HBr}\) because \(\text{Br}^-\) is more electronegative than \(\text{Se}^-\) thus more stable.

4. \(\text{HClO}_3 > \text{CH}_3\text{PO}_3\text{H}_2 > \text{H}_3\text{PO}_4\)

 This is because \(\text{H}_3\text{PO}_4\) is a polyprotic acid which contains more than one ionizable proton, and the protons are lost in a stepwise manner. The fully protonated species is always the strongest acid because it is easier to remove a proton from a neutral molecule than from a negatively charged ion. Thus, acid strength decreases with the loss of subsequent protons, and, correspondingly, the \(pK_a\) increases which indicate it is the most basic. The conjugate base of \(\text{ClO}^-(3^-)\) has a much smaller charge to volume ratio, thus most stable and acidic.
5. \(\text{CF}_3\text{S}^-<\text{OH}^-<\text{CH}_3\text{S}^-\)

\(\text{CF}_3\text{S}^-\) is the most acidic because of the three electronegative Fluorines. \(\text{OH}^-\) is the strongest base in water. Thus, \(\text{CH}_3\text{S}^-\) is in between these aqueous solutions.

6. \(\text{HNO}_2<\text{HClO}_2<\text{HNO}_3\)

\(\text{HNO}_3\) has resonance stabilization, therefore it is the most acidic. Between \(\text{HClO}_2\) and \(\text{HNO}_2\), \(\text{Cl}\) is the most electronegative therefore \(\text{HClO}_2\) is more acidic than \(\text{HNO}_2\).

7. I expect \(\text{H}_2\text{SO}_3\) to be the stronger acid because it is more electronegative or has greater attraction which means it'll be less inclined to share their electrons with a proton.

8. \(\text{CF}_3\text{OH}\) is a stronger acid than \(\text{CH}_3\text{OH}\) in aqueous solution because \(\text{F}\) is more electronegative than \(\text{H}\).

9. It would be expected that \(\text{NH}_3\) be a stronger base than \(\text{Cl}_2\text{NH}\) because it is electronegative due to the two \(\text{Cl}\) atoms.

16.11: Lewis Acids and Bases

Problems

1. Identify the nature of each of the following as either a Lewis Acid or a Lewis Base:
 a. \(\text{NH}_3\)
 b. \(\text{Ag}^+\)
 c. \(\text{Ni}^{2+}\)
 d. \(\text{Pt}^{4+}\)
 e. \(\text{H}_2\text{O}\)
 f. \(\text{SO}_2\)

2. Explain why \(\text{SiF}_4\) can act as a Lewis Acid.

3. Identify the nature of each of the following as either a Lewis Acid or a Lewis Base:
 a. \([\text{Fe(CN)}_6]^{3-}\)
 b. \([\text{Ni(NH}_3)_6]^{2+}\)
 c. \([\text{CdBr}_4]^{2-}\)

4. What is the product of the reaction of \(\text{CO}_2 + \text{OH}^- \rightarrow \) ?

5. In the reactions below, which is the Lewis Acid and/or which is the Lewis Base?
 a. \(\text{NH}_3 + \text{H}^+ \rightarrow \text{NH}_4^+\)
 b. \(\text{H}_2\text{O} + \text{H}^+ \rightarrow \text{H}_3\text{O}^+\)
6. In the complex ion, \([PtCl_6]^{2-}\) which is the Lewis Acid and which is the Lewis base?

7. The reaction of \((AgCl) + (NH_3)\) produces what complex ion?

Solutions

1.
 a. \((NH_3)\) is a Lewis base because nitrogen has a lone pair of electrons to "donate."
 b. \((Ag^+)(+)\) is a Lewis acid because it has an unfilled octet and thus is able to accept a pair of electrons.
 c. \((Ni^{+}(+)\) is a Lewis acid because it has an unfilled octet and thus is able to accept a pair of electrons.
 d. \((Pt^{4+}(+)\) is a Lewis acid because it has an unfilled octet and thus is able to accept a pair of electrons.
 e. \((H_2O)\) is a Lewis base because oxygen has two lone pairs of electrons to "donate."
 f. \((SO_2)\) is a Lewis acid because sulfur has an unfilled octet and thus is able to accept a pair of electrons.

2. \((SiF_4)\) has a central Silicon Atom which can **expand its octet** to 12 (compared to the typical 8) so that it forms \([SiF_6]^{2-}\).

3.
 a. Lewis Acid: \((Fe^{3+})\), Lewis Base: \((CN^-)\)
 b. Lewis Acid: \((Ni^{2+})\), Lewis Base: \((NH_3)\)
 c. Lewis Acid: \((Cd^{2+})\), Lewis Base: \((Br^-)\)

4. This reaction forms a bicarbonate ion. \((CO_2 + OH^- \rightarrow O--COH=O)\).

5.
 a. Lewis Acid: \((H^+)\), Lewis Base: \((NH_3)\)
 b. Lewis Acid: \((H^+)\), Lewis Base: \((H_2O)\)

6. \((Pt^{4+})\) is the Lewis acid and \((Cl^-)\) is the Lewis base.

7. \((AgCl + 2\,(NH_3) \rightarrow [Ag(NH_3)_2]^+ + Cl^-)\)

Conceptual Problems

1. Construct a table comparing how \(OH^-\), \(NH_3\), \(H_2O\), and \(BCl_3\) are classified according to the Arrhenius, the Brønsted–Lowry, and the Lewis definitions of acids and bases

2. Describe how the proton \((H^+)\) can simultaneously behave as an Arrhenius acid, a Brønsted–Lowry acid, and
a Lewis acid.

3. Would you expect aluminum to form compounds with covalent bonds or coordinate covalent bonds? Explain your answer.

4. Classify each compound as a Lewis acid or a Lewis base and justify your choice.

a. \(\text{AlCl}_3\)

b. \(\text{CH}_3\text{N}\)

c. \(\text{IO}_3^-\)

5. Explain how a carboxylate ion \((\text{RCO}_2^-)\) can act as both a Brønsted–Lowry base and a Lewis base.

Conceptual Answers

1. | Arrhenius Acid | Arrhenius Base | Brønsted–Lowry Acid | Brønsted–Lowry Base | Lewis Acid | Lewis Base |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{OH}^-)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(\text{NH}_3)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(\text{BCl}_3)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An Arrhenius acid is a molecule that when dissolved in water it will donate an \(\text{H}^+\) in solution.

An Arrhenius base is a molecule that when dissolved in water it will donate an \(\text{OH}^-\) in solution.

A Brønsted–Lowry acid is a molecule that when dissolved in a solution it will donate an \(\text{H}^+\) in solution.

A Brønsted–Lowry base is a molecule that when dissolved in a solution it will donate an atom or ion capable of accepting or bonding to a free proton in solution.

A Lewis acid is an atom or molecule that accepts an electron pair.
A Lewis base is an atom or molecule that donates an electron pair.

2. The proton (H^+) can simultaneously behave as an Arrhenius acid because when it is dissolved in water it will donate itself. $(H^+ + H_2O \rightleftharpoons H_3O^+)$

The proton (H^+) can simultaneously behave as a Brønsted–Lowry acid because when it is dissolved in solution it will donate itself.

$(H^+ + B^- \rightleftharpoons HB)$

The proton (H^+) can simultaneously behave as a Lewis acid as it can accept an electron pair.

$(H^+ + B^- \rightleftharpoons HB)$

3. It is expected that Aluminum forms a coordinate covalent bond as it can participate in a Lewis acid and a Lewis base interaction. For example $(Al^{3+} + H_2O \rightleftharpoons [Al(OH_2)_{6}]^{3+})$

4.
 a. $(AlCl_3)$ is a Lewis as (Al) can accept an electron pair.
 b. (CH_3N) is a Lewis base as (N) can donate an electron pair.
 c. (IO_3^-) is a Lewis base as (I) can donate an electron pair.

5. The carboxylate ion (RCO_2^-) can act as Brønsted–Lowry base because when dissolved in a solution the electron rich (O) is capable of accepting a proton. The carboxylate ion (RCO_2^-) can act as a Lewis base because the electron rich (O) can donate an electron pair.

Numerical Problems

1. In each reaction, identify the Lewis acid and the Lewis base and complete the reaction by writing the products(s).

 a. $(CH_3)_2O + AlCl_3$
 b. $SnCl_4 + 2 Cl^-$

2. Use Lewis dot symbols to depict the reaction of BCl$_3$ with dimethyl ether $[(CH_3)_2O]$. How is this reaction similar to that in which a proton is added to ammonia?

Answer

1.
 a. The Lewis acid is $(AlCl_3)$ and the Lewis base is $(CH_3)_{2}O)$.

\((\text{CH}_3)_2\text{O} + \text{AlCl}_3 \rightleftharpoons \text{AlCl}_3 \cdot \text{O(\text{CH}_3)}_2\)\\
b. The Lewis acid is \((\text{SnCl}_4)\) and the Lewis base is \((\text{Cl}^-)\).
\((\text{SnCl}_4 + 2\text{Cl}^- \rightleftharpoons \text{SnCl}_6^{2-})\)

2.
\((\text{BCl}_3 + (\text{CH}_3)_2\text{O} \rightleftharpoons \text{BCl}_3 \cdot \text{O(\text{CH}_3)}_2)\)

This reaction is similar to that in which a proton is added to ammonia as it also involves a Lewis acid and a Lewis base interaction.