Periodic acid is the highest oxoacid of iodine, in which the iodine exists in oxidation state VII. Like all periodates it can exist in two forms: orthoperiodic acid, with the chemical formula H_5IO_6 and metaperiodic acid, which has the formula HIO_4. Periodic acid was discovered by Heinrich Gustav Magnus and C. F. Ammermüller in 1833.

Orthoperiodic Acid Metaperiodic Acid

By NEUROtiker (Own work) [Public domain], via Wikimedia Commons

By Benjah-bmm27 (Own work) [Public domain], via Wikimedia Commons

Synthesis

Modern industrial scale production involves the electrochemical oxidation of iodic acid, on a PbO$_2$ anode, with the following standard electrode potential:

$$\text{H}_5\text{IO}_6 + \text{H}^+ + 2 \text{e}^- \rightarrow \text{IO}^{-3} + 3 \text{H}_2\text{O} \quad \text{E}^\circ = 1.6 \text{ V}$$
Orthoperiodic acid can be dehydrated to give metaperiodic acid by heating to 100 °C

\[
\text{HIO}_4 + 2 \text{H}_2\text{O} \rightleftharpoons \text{H}_5\text{IO}_6
\]

Further heating to around 150 °C gives iodine pentoxide (I₂O₅) rather than the expected anhydride diiodine heptoxide (I₂O₇). Metaperiodic acid can also be prepared by from various orthoperiodates by treatment with dilute nitric acid.

\[
\text{H}_5\text{IO}_6 \rightarrow \text{HIO}_4 + 2 \text{H}_2\text{O}
\]

Properties

Orthoperiodic acid has a number of acid dissociation constants. The pKa of metaperiodic acid has not been determined.

\[
\text{H}_5\text{IO}_6 = \text{H}_4\text{IO}^- + \text{H}_3\text{IO}_6^+, \text{pKa} = 3.29
\]

\[
\text{H}_4\text{IO}^- = \text{H}_3\text{IO}_2^- + \text{H}_2\text{IO}_6^+, \text{pKa} = 8.31
\]

\[
\text{H}_3\text{IO}_2^- = \text{H}_2\text{IO}_3^- + \text{H}_3\text{IO}_6^+, \text{pKa} = 11.60
\]

There being two forms of periodic acid, it follows that two types of periodate salts are formed. For example, sodium metaperiodate, NaIO₄, can be synthesised from HIO₄ while sodium orthoperiodate, Na₅IO₆ can be synthesised from H₅IO₆.

Structure

Orthoperiodic acid forms monoclinic crystals (space group P2₁/n) consisting of slightly deformed IO₆ octahedron interlinked via bridging hydrogens. The crystal structure of metaperiodic acid also includes IO₆ octahedron, however these are connected via cis-edge-sharing with bridging oxygens to form one-dimensional infinite chains.

Reactions

Like all periodates, periodic acid can be used to cleave various 1,2-difunctional compounds. Most notably, periodic acid will cleave vicinal diols into two aldehyde or ketone fragments.

![Chemical structure](http://creativecommons.org/licenses/by-sa/3.0)

By Project Osprey (Own work) [CC BY-SA 3.0](http://creativecommons.org/licenses/by-sa/3.0), via Wikimedia Commons

This can be useful in determining the structure of carbohydrates as periodic acid can be used to open saccharide rings. This process is often used in labeling saccharides with fluorescent molecules or other tags such as biotin. Because the process requires vicinal diols, periodate oxidation is often used to selectively label the 3'-termini of RNA (ribose has
vicinal diols) instead of DNA as deoxyribose does not have vicinal diols.

Periodic acid is also used in as an oxidising agent of moderate strength.

Other oxyacids

Periodate is part of a series of oxyacids in which iodine can assume oxidation states of -1, $+1$, $+3$, $+5$, or $+7$. A number of neutral iodine oxides are also known.

<table>
<thead>
<tr>
<th>Iodine Oxidation State</th>
<th>-1</th>
<th>+1</th>
<th>+3</th>
<th>+5</th>
<th>+7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Hydrogen iodide</td>
<td>Hypoiodous acid</td>
<td>Iodous acid</td>
<td>Iodic acid</td>
<td>Periodic acid</td>
</tr>
<tr>
<td>Formula</td>
<td>HI</td>
<td>HIO</td>
<td>HIO2</td>
<td>HIO3</td>
<td>HIO4 or H5IO5</td>
</tr>
</tbody>
</table>

References

Contributors

- Wikipedia (CC-BY-SA-3.0)