For a diatomic species, the vibration-rotation \(\left(\dfrac{V}{R} \right) \) kinetic energy operator can be expressed as follows in terms of the bond length \(R \) and the angles \(\theta \) and \(\phi \) that describe the orientation of the bond axis relative to a laboratory-fixed coordinate system:

\[
\begin{align*}
T_{V/R} &= \dfrac{-\hbar^2}{2\mu} \left[\dfrac{1}{R^2} \dfrac{\partial}{\partial R} \left(R^2 \dfrac{\partial}{\partial R} \right) - \dfrac{L(L+1)}{R^2\hbar^2} \right], \\
L^2 &= \hbar^2 \left[\dfrac{1}{\sin \theta} \dfrac{\partial}{\partial \theta} \left(\sin \theta \dfrac{\partial}{\partial \theta} \right) + \dfrac{1}{\sin^2 \theta} \dfrac{\partial^2}{\partial \phi^2} \right].
\end{align*}
\]

where the square of the rotational angular momentum of the diatomic species is

\[
\begin{align*}
L^2 &= \hbar^2 \dfrac{1}{\sin \theta} \dfrac{\partial}{\partial \theta} \left(\sin \theta \dfrac{\partial}{\partial \theta} \right) + \dfrac{1}{\sin^2 \theta} \dfrac{\partial^2}{\partial \phi^2},
\end{align*}
\]

Because the potential \(E_j(R) \) depends on \(R \) but not on \(\theta \) or \(\phi \), the \(\dfrac{V}{R} \) function \(\chi^0_{j,m} \) can be written as a product of an angular part and an \(R \)-dependent part; moreover, because \(L^2 \) contains the full angle-dependence of \(T_{V/R} \), \(\chi^0_{j,m} \) can be written as

\[
\chi^0_{j,m} = Y_{J,M}(\theta,\phi)F_{j,J,v}(R).
\]

The general subscript \(n \), which had represented the state in the full set of 3M-3 \(R \)-space coordinates, is replaced by the three quantum numbers \(J,M, \) and \(v \) (i.e., once one focuses on the three specific coordinates \(R, \theta, \phi \), a total of three quantum numbers arise in place of the symbol \(n \)).

Substituting this product form for \(\chi^0_{j,m} \) into the \(\dfrac{V}{R} \) equation gives:

\[
\begin{align*}
\dfrac{-\hbar^2}{2\mu} \left[\dfrac{1}{R^2} \dfrac{\partial}{\partial R} \left(R^2 \dfrac{\partial}{\partial R} \right) - \dfrac{J(J+1)}{R^2\hbar^2} \right] F_{j,J,v}(R) + E_j(R)F_{j,J,v}(R) &= E^0_{j,J,v}F_{j,J,v},
\end{align*}
\]

as the equation for the vibrational (i.e., \(R \)-dependent) wavefunction within electronic state \(j \) and with the species rotating with \(L(J+1) \) \(\hbar \) as the square of the total angular momentum and a projection along the laboratory-fixed \(Z \)-axis of \(M\hbar \). The fact that the \(\chi^0_{j,J,v} \) functions do not depend on the \(M \) quantum number derives from the fact that the \(T_{V/R} \) kinetic energy operator does not explicitly contain \(J_Z \); only \(J(J+1) \) appears in \(T_{V/R} \).

The solutions for which \(J=0 \) correspond to vibrational states in which the species has no rotational energy; they obey

\[
\begin{align*}
\dfrac{-\hbar^2}{2\mu} \dfrac{\partial}{\partial R} \dfrac{\partial}{\partial R} \chi_{j,0,v}(R) + E_j(R) \chi_{j,0,v}(R) &= E^0_{j,0,v}\chi_{j,0,v},
\end{align*}
\]

The differential-operator parts of this equation can be simplified somewhat by substituting \(F = \dfrac{\chi}{R} \) and thus obtaining the following equation for the new function \(\chi \):

\[
\begin{align*}
\chi_{j,0,v}(R) + E_j(R) \chi_{j,0,v}(R) &= E^0_{j,0,v}\chi_{j,0,v}.
\end{align*}
\]
Solutions for which $J \neq 0$ require the vibrational wavefunction and energy to respond to the presence of the 'centrifugal potential' given by $\frac{\hbar^2 J(J+1)}{2 \mu R^2}$; these solutions obey the full coupled V/R equations given above.

Contributors

- Jack Simons (Henry Eyring Scientist and Professor of Chemistry, U. Utah) Telluride Schools on Theoretical Chemistry and Jeff A. Nichols (Oak Ridge National Laboratory)