Learning Outcomes

- Describe how homeostasis and equilibrium are different.

Remove one stone and the whole arch collapses. The same is true for the human body. All the systems work together to maintain stability or homeostasis. Disrupt one system, and the whole body may be affected.

Homeostasis

All of the organs and organ systems of the human body work together like a well-oiled machine. This is because they are closely regulated by the nervous and endocrine systems. The nervous system controls virtually all body activities, and the endocrine system secretes hormones that regulate these activities. Functioning together, the organ systems supply body cells with all the substances they need and eliminate their wastes. They also keep temperature, pH, and other conditions at just the right levels to support life processes.

Maintaining Homeostasis

The process in which organ systems work to maintain a stable internal environment is called homeostasis. Keeping a stable internal environment requires constant adjustments. Here are just three of the many ways that human organ systems help the body maintain homeostasis:

- Respiratory system: A high concentration of carbon dioxide in the blood triggers faster breathing. The lungs exhale more frequently, which removes carbon dioxide from the body more quickly.
- Excretory system: A low level of water in the blood triggers retention of water by the kidneys. The kidneys produce more concentration urine, so less water is lost from the body.
- Endocrine system: A high concentration of sugar in the blood triggers secretion of insulin by an endocrine gland called the pancreas. Insulin is a hormone that helps cells absorb sugar from the blood.

So how does your body maintain homeostasis? The regulation of your internal environment is done primarily through negative feedback. Negative feedback is a response to a stimulus that keeps a variable close to a set value (see figure below). Essentially, it "shuts off" or "turns off" a system when it varies from a set value.
For example, your body has an internal thermostat. During a winter day, in your house a thermostat senses the temperature in a room and responds by turning on or off the heater. Your body acts in much the same way. When body temperature rises, receptors in the skin and the brain sense the temperature change. The temperature change triggers a command from the brain. This command can cause several responses. If you are too hot, the skin makes sweat and blood vessels near the skin surface dilate. This response helps decrease body temperature.

Another example of negative feedback has to do with blood glucose levels. When glucose (sugar) levels in the blood are too high, the pancreas secretes insulin to stimulate the absorption of glucose and the conversion of glucose into glycogen, which is stored in the liver. As blood glucose levels decrease, less insulin is produced. When glucose levels are too low, another hormone called glucagon is produced, which causes the liver to convert glycogen back to glucose.

Figure \(\PageIndex{1}\): Feedback Regulation. If a raise in body temperature (stimulus) is detected (receptor), a signal will cause the brain to maintain homeostasis (response). Once the body temperature returns to normal, negative feedback will cause the response to end. This sequence of stimulus-receptor-signal-response is used throughout the body to maintain homeostasis.

Positive Feedback

Some processes in the body are regulated by positive feedback. Positive feedback is when a response to an event increases the likelihood of the event to continue. An example of positive feedback is milk production in nursing mothers. As the baby drinks her mother’s milk, the hormone prolactin, a chemical signal, is released. The more the baby suckles, the more prolactin is released, which causes more milk to be produced. Other examples of positive feedback include contractions during childbirth. When constrictions in the uterus push a baby into the birth canal, additional contractions occur.

Failure of Homeostasis

Many homeostatic mechanisms such as these work continuously to maintain stable conditions in the human body. Sometimes, however, the mechanisms fail. When they do, cells may not get everything they need, or toxic wastes may accumulate in the body. If homeostasis is not restored, the imbalance may lead to disease or even death.
Homeostasis vs. Equilibrium

Homeostasis requires an input of energy to maintain a specific condition necessary for life. Disturbances to homeostasis must be responded to in order to avoid death or disease. For example, a body needs to maintain a certain internal temperature. Go outside in cold weather - body shivers to maintain its body temperature.

Dynamic equilibrium is maintaining a specific condition that minimizes the system's energy, depending on the circumstances. A disturbance to an equilibrium is responded to in order to shift the process to reestablish an equilibrium. For example, if a warm object (say a metal bowl) is placed outside in cold weather - the transfer of heat occurs and the temperature of the bowl equilibrates to the outside temperature. If this happened to a person, it would not be good.

Contributors and Attributions

- [CK-12 Foundation](#) by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
- [Allison Soult](#), Ph.D. (Department of Chemistry, University of Kentucky)