Learning Objectives

- Explain the following laws within the Ideal Gas Law

Fission Reactors

Fission reactions can be used in the production of electricity if we control the rate at which the fission occurs. The great majority of all electrical generating systems (whether coal burning power plants, hydroelectric plants, or nuclear power plants) all follow a reasonably simple design. The electricity is produced by spinning a coil of wire inside a magnetic field. When a fluid (air, steam, water) is forced through the pipe, it spins the fan blades which in turn spin the axle. To generate electricity, the axle of a turbine is attached to the loop of wire in a generator. When a fluid is forced through the turbine, the fan blades turn, the turbine axle turns, and the loop of wire inside the generator turns, thus generating electricity.

The essential difference in various kinds of electrical generating systems is the method used to spin the turbine. For a wind generator, the turbine is a windmill. In a geothermal generator, steam from a geyser is forced through the turbine. In hydroelectric generating plants, water falling over a dam passes through the turbine and spins it. In fossil fuel (coal, oil, natural gas) generating plants, the fossil fuel is burned and the heat is used to boil water into steam and then the steam passes through the turbine and makes it spin. In a fission reactor generating plant, a fission reaction is used to boil the water into steam and the steam passes through the turbine to make it spin. Once the steam is generated by the fission reaction, a nuclear power plant is essentially the same as a fossil fuel plant.

Naturally occurring uranium is composed almost totally of two uranium isotopes. It contains more than \((99\%)\) uranium-238 and less than \((1\%)\) uranium-235. It is the uranium-235, however, that is fissionable (will undergo fission). In order for uranium to be used as fuel in a fission reactor, the percentage of uranium-235 must be increased, usually to about \((3\%)\). (Uranium in which the \(\ce{U}\)-235 content is more than \((1\%)\) is called enriched uranium.)

Once the supply of \(\ce{U}\)-235 is acquired, it is placed in a series of long cylindrical tubes called fuel rods. These fuel cylinders are bundled together with control rods made of neutron-absorbing material. The amount of \(\ce{U}\)-235 in all the fuel rods taken together is adequate to carry on a chain reaction but is less than the critical mass. (In the United States, all public nuclear power plants contain less than a critical mass of \(\ce{U}\)-235 and therefore, could never produce a nuclear explosion.) The amount of heat generated by the chain reaction is controlled by the rate at which the nuclear reaction occurs. The rate of the nuclear reaction is dependent on how many neutrons are emitted by one \(\ce{U}\)-235 nuclear disintegration and strike a new \(\ce{U}\)-235 nucleus to cause another disintegration. The purpose of the control rods is to absorb some of the neutrons and thus stop them from causing further disintegrations. The control rods can be raised or lowered into the fuel rod bundle. When the control rods are lowered all the way into the fuel rod bundle, they absorb so many neutrons that the chain reaction essentially stops. When more heat is desired, the control rods are raised so they catch fewer neutrons, and the chain reaction speeds up and more heat is generated. The control rods are operated in a fail-safe system so that power is necessary to hold them up; during a power failure, gravity will pull the control rods down into the shut off position.

\(\ce{U}\)-235 nuclei can capture neutrons and disintegrate more efficiently if the neutrons are moving slower than the speed at which they are released. Fission reactors use a moderator surrounding the fuel rods to slow down the
neutrons. Water is not only a good coolant but also a good moderator so a common type of fission reactor has the fuel core submerged in a huge pool of water.

You can follow the operation of an electricity-generating fission reactor in the figure. The reactor core is submerged in a pool of water. The heat from the fission reaction heats the water and the water is pumped into a heat exchanger container where the heated water boils the water in the heat exchanger. The steam from there is forced through a turbine which spins a generator and produces electricity. After the water passes through the turbine, it is condensed back to liquid water and pumped back to the heat exchanger.

In the United States, heavy opposition to the use of nuclear energy was mounted in the late 1960's and early 1970's. Every environmentalist organization in the US opposed the use of nuclear energy and the constant pressure from environmentalist groups brought increased public fear and therefore, opposition. This is not true today; at least one environmental leader has published a paper in favor of nuclear powered electricity generation.

Figure \[\PageIndex{1}\]: A Light-Water Nuclear Fission Reactor for the Production of Electric Power. The fuel rods are made of a corrosion-resistant alloy that encases the partially enriched uranium fuel; controlled fission of ^{235}U in the fuel produces heat. Water surrounds the fuel rods and moderates the kinetic energy of the neutrons, slowing them to increase the probability that they will induce fission. Control rods that contain elements such as boron, cadmium, or hafnium, which are very effective at absorbing neutrons, are used to control the rate of the fission reaction. A heat exchanger is used to boil water in a secondary cooling system, creating steam to drive the turbine and produce electricity. The large hyperbolic cooling tower, which is the most visible portion of the facility, condenses the steam in the secondary cooling circuit; it is often located at some distance from the actual reactor.

In 1979, a reactor core meltdown at Pennsylvania's Three Mile Island nuclear power plant reminded the entire country of the dangers of nuclear radiation. The concrete containment structure (six feet thick walls of reinforced concrete), however, did what it was designed to do - prevent radiation from escaping into the environment. Although the reactor was shut down for years, there were no injuries or deaths among nuclear workers or nearby residents. Three Mile Island was the only serious accident in the entire history of 103 civilian power plants operating for 40 years in the United States. There has never been a single injury or death due to radiation in any public nuclear power plant in the U.S. The accident at Three Mile Island did, however, frighten the public so that there has not been a nuclear power plant built in the U.S. since the accident.

The 103 nuclear power plants operating in the U.S. deliver approximately $\langle 19.4\% \rangle$ of American electricity with zero greenhouse gas emission. There are 600 coal-burning electric plants in the US delivering $\langle 48.5\% \rangle$ of American electricity and producing 2 billion tons of $\langle \text{CO}_2 \rangle$ annually, accounting for $\langle 40\% \rangle$ of U.S. $\langle \text{CO}_2 \rangle$ emissions and $\langle 10\% \rangle$ of global emissions. These coal burning plants also produce $\langle 64\% \rangle$ of the sulfur dioxide emissions, $\langle 26\% \rangle$ of the nitrous oxide emissions, and $\langle 33\% \rangle$ of mercury emissions.
Fusion

Nuclear reactions, in which two or more lighter-mass nuclei join together to form a single nucleus, are called fusion reactions or nuclear fusions. Of particular interest are fusion reactions in which hydrogen nuclei combine to form helium. Hydrogen nuclei are positively charged and repel each other. The closer the particles come, the greater is the force of repulsion. In order for fusion reactions to occur, the hydrogen nuclei must have extremely high kinetic energies so the velocities can overcome the forces of repulsion. These kinetic energies only occur at extreme temperatures such as those that occur in the cores of the sun and other stars. Nuclear fusion is the power source for the stars where the necessary temperature to ignite the fusion reaction is provided by massive gravitational pressure. In stars more massive than our sun, fusion reactions involving carbon and nitrogen are possible. These reactions produce more energy than hydrogen fusion reactions.

Figure \(\PageIndex{2}\): A Possible Design for a Nuclear Fusion Reactor. The extraordinarily high temperatures needed to initiate a nuclear fusion reaction would immediately destroy a container made of any known material. One way to avoid contact with the container walls is to use a high-energy plasma as the fuel. Because plasma is essentially a gas composed of ionized particles, it can be confined using a strong magnetic field shaped like a torus (a hollow donut).

Intensive research is now being conducted to develop fusion reactors for electricity generation. The two major problems slowing up the development is finding a practical means for generating the intense temperature needed and developing a container that won't melt under the conditions of a fusion reaction. Electricity-producing fusion reactors are still a distant dream.

Summary

- Nuclear fission refers to the splitting of atomic nuclei.
- Nuclear fusion refers to the joining together to two more smaller nuclei to form a single nucleus
- The fission of \(\ce{U}\)-235 or \(\ce{Pu}\)-239 is used in nuclear reactors.

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:
• OK-12 Foundation by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.