Learning Objectives

- Explain the observations that led to Thomson's discovery of the electron.
- Describe Thomson's "plum pudding" model of the atom and the evidence for it.
- Draw a diagram of Thomson's "plum pudding" model of the atom and explain why it has this name.
- Describe Rutherford's gold foil experiment and explain how this experiment altered the "plum pudding" model.
- Draw a diagram of the Rutherford model of the atom and label the nucleus and the electron cloud.

Dalton's Atomic Theory held up well to a lot of the different chemical experiments that scientists performed to test it. In fact, for almost 100 years, it seemed as if Dalton's Atomic Theory was the whole truth. However, in 1897, a scientist named J. J. Thomson conducted some research that suggested that Dalton's Atomic Theory was not the entire story. He suggested that the small, negatively charged particles making up the cathode ray were actually pieces of atoms. He called these pieces "corpuscles," although today we know them as electrons. Thanks to his clever experiments and careful reasoning, J. J. Thomson is credited with the discovery of the electron.
Electrons and Plums

The electron was discovered by J.J. Thomson in 1897. The existence of protons was also known, as was the fact that atoms were neutral in charge. Since the intact atom had no net charge and the electron and proton had opposite charges, the next step after the discovery of subatomic particles was to figure out how these particles were arranged in the atom. This is a difficult task because of the incredibly small size of the atom. Therefore, scientists set out to design a model of what they believed the atom could look like. The goal of each atomic model was to accurately represent all of the experimental evidence about atoms in the simplest way possible.

Following the discovery of the electron, J.J. Thomson developed what became known as the "plum pudding" model in 1904. Plum pudding is an English dessert similar to a blueberry muffin. In Thomson's plum pudding model of the atom,
the electrons were embedded in a uniform sphere of positive charge like blueberries stuck into a muffin. The positive matter was thought to be jelly-like or a thick soup. The electrons were somewhat mobile. As they got closer to the outer portion of the atom, the positive charge in the region was greater than the neighboring negative charges and the electron would be pulled back more toward the center region of the atom.

Figure \(\PageIndex{2}\): The "plum pudding" model.

However, this model of the atom soon gave way to a new model developed by New Zealander Ernest Rutherford (1871 - 1937) about five years later. Thomson did still receive many honors during his lifetime, including being awarded the Nobel Prize in Physics in 1906 and a knighthood in 1908.

Atoms and Gold

In 1911, Rutherford and coworkers Hans Geiger and Ernest Marsden initiated a series of groundbreaking experiments that would completely change the accepted model of the atom. They bombarded very thin sheets of gold foil with fast moving **alpha particles**. Alpha particles, a type of natural radioactive particle, are positively charged particles with a mass about four times that of a hydrogen atom.

Figure \(\PageIndex{3}\): (A) The experimental setup for Rutherford's gold foil experiment: A radioactive element that emitted alpha particles was directed toward a thin sheet of gold foil that was surrounded by a screen which would allow detection of the deflected particles. (B) According to the plum pudding model (top) all of the alpha particles should have passed through the gold foil with little or no deflection. Rutherford found that a small percentage of alpha particles were deflected at large angles, which could be explained by an atom with a very small, dense, positively-charged nucleus at its center (bottom).

According to the accepted atomic model, in which an atom's mass and charge are uniformly distributed throughout the atom, the scientists expected that all of the alpha particles would pass through the gold foil with only a slight deflection or none at all. Surprisingly, while most of the alpha particles were indeed undeflected, a very small percentage (about 1
in 8000 particles) bounced off the gold foil at very large angles. Some were even redirected back toward the source. No prior knowledge had prepared them for this discovery. In a famous quote, Rutherford exclaimed that it was "as if you had fired a 15-inch [artillery] shell at a piece of tissue and it came back and hit you."

Rutherford needed to come up with an entirely new model of the atom in order to explain his results. Because the vast majority of the alpha particles had passed through the gold, he reasoned that most of the atom was empty space. In contrast, the particles that were highly deflected must have experienced a tremendously powerful force within the atom. He concluded that all of the positive charge and the majority of the mass of the atom must be concentrated in a very small space in the atom's interior, which he called the nucleus. The nucleus is the tiny, dense, central core of the atom and is composed of protons and neutrons.

Rutherford's atomic model became known as the nuclear model. In the nuclear atom, the protons and neutrons, which comprise nearly all of the mass of the atom, are located in the nucleus at the center of the atom. The electrons are distributed around the nucleus and occupy most of the volume of the atom. It is worth emphasizing just how small the nucleus is compared to the rest of the atom. If we could blow up an atom to be the size of a large professional football stadium, the nucleus would be about the size of a marble.

Rutherford's model proved to be an important step towards a full understanding of the atom. However, it did not completely address the nature of the electrons and the way in which they occupied the vast space around the nucleus. It was not until some years later that a full understanding of the electron was achieved. This proved to be the key to understanding the chemical properties of elements.

Atomic Nucleus

The nucleus (plural, nuclei) is a positively charged region at the center of the atom. It consists of two types of subatomic particles packed tightly together. The particles are protons, which have a positive electric charge, and neutrons, which are neutral in electric charge. Outside of the nucleus, an atom is mostly empty space, with orbiting negative particles called electrons whizzing through it. The figure below shows these parts of the atom.

![Figure 4: The nuclear atom](image)

The nucleus of the atom is extremely small. Its radius is only about 1/100,000 of the total radius of the atom. If an atom
were the size of a football stadium, the nucleus would be about the size of a pea! Electrons have virtually no mass, but protons and neutrons have a lot of mass for their size. As a result, the nucleus has virtually all the mass of an atom. Given its great mass and tiny size, the nucleus is very dense. If an object the size of a penny had the same density as the nucleus of an atom, its mass would be greater than 30 million tons!

Holding It All Together

Particles with opposite electric charges attract each other. This explains why negative electrons orbit the positive nucleus. Particles with the same electric charge repel each other. This means that the positive protons in the nucleus push apart from one another. So why doesn't the nucleus fly apart? An even stronger force - called the strong nuclear force - holds protons and neutrons together in the nucleus.

Summary

• Atoms are the ultimate building blocks of all matter.
• The modern atomic theory establishes the concepts of atoms and how they compose matter.
• Bombardment of gold foil with alpha particles showed that some particles were deflected.
• The nuclear model of the atom consists of a small and dense positively charged interior surrounded by a cloud of electrons.

Contributors

• CK-12 Foundation by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.