Learning Objectives

• To identify the components of the scientific method

Scientists search for answers to questions and solutions to problems by using a procedure called the scientific method. This procedure consists of making observations, formulating hypotheses, and designing experiments, which in turn lead to additional observations, hypotheses, and experiments in repeated cycles (Figure \(\PageIndex{1}\)).

![Figure \(\PageIndex{1}\): The Steps in the Scientific Method.](image)

Step 1: Make observations

Observations can be qualitative or quantitative. **Qualitative observations** describe properties or occurrences in ways that do not rely on numbers. Examples of qualitative observations include the following: the outside air temperature is cooler during the winter season, table salt is a crystalline solid, sulfur crystals are yellow, and dissolving a penny in dilute nitric acid forms a blue solution and a brown gas. **Quantitative observations** are measurements, which by definition consist of both a number and a unit. Examples of quantitative observations include the following: the melting point of crystalline sulfur is 115.21°C, and 35.9 grams of table salt—whose chemical name is sodium chloride—dissolve in 100 grams of water at 20°C Celsius. For the question of the dinosaurs’ extinction, the initial observation was quantitative:
iridium concentrations in sediments dating to 66 million years ago were 20–160 times higher than normal.

Step 2: Formulate a hypothesis

After deciding to learn more about an observation or a set of observations, scientists generally begin an investigation by forming a hypothesis, a tentative explanation for the observation(s). The hypothesis may not be correct, but it puts the scientist’s understanding of the system being studied into a form that can be tested. For example, the observation that we experience alternating periods of light and darkness corresponding to observed movements of the sun, moon, clouds, and shadows is consistent with either of two hypotheses:

- a. Earth rotates on its axis every 24 hours, alternately exposing one side to the sun, or
- b. the sun revolves around Earth every 24 hours.

Suitable experiments can be designed to choose between these two alternatives. For the disappearance of the dinosaurs, the hypothesis was that the impact of a large extraterrestrial object caused their extinction. Unfortunately (or perhaps fortunately), this hypothesis does not lend itself to direct testing by any obvious experiment, but scientists can collect additional data that either support or refute it.

Step 3: Design and perform experiments

After a hypothesis has been formed, scientists conduct experiments to test its validity. Experiments are systematic observations or measurements, preferably made under controlled conditions—that is, under conditions in which a single variable changes.

Step 4: Accept or modify the hypothesis

A properly designed and executed experiment enables a scientist to determine whether the original hypothesis is valid. In which case he can proceed to step 5. In other cases, experiments often demonstrate that the hypothesis is incorrect or that it must be modified thus requiring further experimentation.

Step 5: Development into a law and/or theory

More experimental data are then collected and analyzed, at which point a scientist may begin to think that the results are sufficiently reproducible (i.e., dependable) to merit being summarized in a law, a verbal or mathematical description of a phenomenon that allows for general predictions. A law simply says what happens; it does not address the question of why.

One example of a law, the law of definite proportions, which was discovered by the French scientist Joseph Proust (1754–1826), states that a chemical substance always contains the same proportions of elements by mass. Thus, sodium chloride (table salt) always contains the same proportion by mass of sodium to chlorine, in this case 39.34% sodium and 60.66% chlorine by mass, and sucrose (table sugar) is always 42.11% carbon, 6.48% hydrogen, and 51.41% oxygen by mass.
Whereas a law states only what happens, a theory attempts to explain why nature behaves as it does. Laws are unlikely to change greatly over time unless a major experimental error is discovered. In contrast, a theory, by definition, is incomplete and imperfect, evolving with time to explain new facts as they are discovered.

Because scientists can enter the cycle shown in Figure 1 at any point, the actual application of the scientific method to different topics can take many different forms. For example, a scientist may start with a hypothesis formed by reading about work done by others in the field, rather than by making direct observations.

Example 1

Classify each statement as a law, a theory, an experiment, a hypothesis, an observation.

a. Ice always floats on liquid water.
b. Birds evolved from dinosaurs.
c. Hot air is less dense than cold air, probably because the components of hot air are moving more rapidly.
d. When 10 g of ice were added to 100 mL of water at 25°C, the temperature of the water decreased to 15.5°C after the ice melted.
e. The ingredients of Ivory soap were analyzed to see whether it really is 99.44% pure, as advertised.

Solution

a. This is a general statement of a relationship between the properties of liquid and solid water, so it is a law.
b. This is a possible explanation for the origin of birds, so it is a hypothesis.
c. This is a statement that tries to explain the relationship between the temperature and the density of air based on fundamental principles, so it is a theory.
d. The temperature is measured before and after a change is made in a system, so these are observations.
e. This is an analysis designed to test a hypothesis (in this case, the manufacturer’s claim of purity), so it is an experiment.

Exercise 1

Classify each statement as a law, a theory, an experiment, a hypothesis, a qualitative observation, or a quantitative observation.

a. Measured amounts of acid were added to a Rolaids tablet to see whether it really “consumes 47 times its weight in excess stomach acid.”
b. Heat always flows from hot objects to cooler ones, not in the opposite direction.
c. The universe was formed by a massive explosion that propelled matter into a vacuum.
d. Michael Jordan is the greatest pure shooter ever to play professional basketball.
e. Limestone is relatively insoluble in water but dissolves readily in dilute acid with the evolution of a gas.

Answer a: experiment

Answer b: law
Answer c: theory

Answer d: hypothesis

Answer e: observation

Summary

The scientific method is a method of investigation involving experimentation and observation to acquire new knowledge, solve problems, and answer questions. The key steps in the scientific method include the following:

- Step 1: Make observations.
- Step 2: Formulate a hypothesis.
- Step 3: Test the hypothesis through experimentation.
- Step 4: Accept or modify the hypothesis.
- Step 5: Development into a law and/or a theory

Contributions & Attributions

This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

- CK-12 Foundation by Sharon Bewick, Richard Parsons, Therese Forsythe, Shonna Robinson, and Jean Dupon.
- Wikipedia
- Marisa Alviar-Agnew (Sacramento City College)
- Henry Agnew (UC Davis)