Petrucci: General Chemistry
Principles and Modern Applications

- Front Matter
 - TitlePage
 - InfoPage
 - Table of Contents

1: Matter- Its Properties and Measurement

- 1.1: The Scientific Method
- 1.2: Properties of Matter
- 1.3: Classification of Matter
- 1.4: Measurement of Matter: SI (Metric) Units
- 1.5: Density and Percent Composition: Their Use in Problem Solving
- 1.6: Uncertainties in Scientific Measurements
- 1.7: Significant Figures
- 1.E: Exercises
2: Atoms and The Atomic Theory

- 2.1: Early Chemical Discoveries and the Atomic Theory
- 2.2: Electrons and Other Discoveries in Atomic Physics
- 2.3: The Nuclear Atom
- 2.4: Chemical Elements
- 2.5: Atomic Mass
- 2.6: Introduction to the Periodic Table
- 2.7: The Concept of Mole and the Avogadro Constant
- 2.8: Using the Mole Concept in Calculations
- Homework Problems

3: Chemical Compounds

- 3.1: Types of Chemical Compounds and their Formulas
- 3.2: The Mole Concept and Chemical Compounds
- 3.3: Composition of Chemical Compounds
- 3.4: Oxidation States: A Useful Tool in Describing Chemical Compounds
- 3.5: Importance of Nomenclature
- 3.6: Names and Formulas of Inorganic Compounds
- 3.7: Names of Formulas of Organic Compounds
- 3.8: Homework Problems
4: Chemical Reactions

- 4.1: Chemical Reactions and Chemical Equations
- 4.2: Chemical Equations and Stoichiometry
- 4.3: Chemical Reactions in Solution
- 4.4: Determining the Limiting Reactant
- 4.5: Other Practical Matters in Reaction Stoichiometry

5: Introduction to Reactions in Aqueous Solutions

- 5.1: The Nature of Aqueous Solutions
- 5.2: Precipitation Reactions
- 5.3: Acid-Base Reactions
- 5.4: Oxidation-Reduction: Some General Principles
- 5.5: Balancing Oxidation-Reduction Equations
- 5.6: Oxidizing and Reducing Agents
- 5.7: Stoichiometry of Reactions in Aqueous Solutions: Titrations
• 6: Gases

- 6.1: Properties of Gases: Gas Pressure
- 6.2: The Simple Gas Laws
- 6.3: Combining the Gas Laws: The Ideal Gas Equation and the General Gas Equation
- 6.4: Applications of the Ideal Gas Equation
- 6.5: Gases in Chemical Reactions
- 6.6: Mixtures of Gases
- 6.7: Kinetic-Molecular Theory of Gases
- 6.8: Gas Properties Relating to the Kinetic-Molecular Theory
- 6.9: Non-ideal (Real) Gases

• 7: Thermochemistry

- 7.1: Getting Started: Some Terminology
- 7.2: Heat
- 7.3: Heats of Reactions and Calorimetry
- 7.4: Work
- 7.5: The First Law of Thermodynamics
- 7.6: Heats of Reactions - ΔU and ΔH
- 7.7: Indirect Determination of ΔH - Hess's Law
- 7.8: Standard Enthalpies of Formation
- 7.9: Fuels as Sources of Energy
8: Electrons in Atoms

8.1: Electromagnetic Radiation
8.2: Atomic Spectra
8.3: Quantum Theory
8.4: The Bohr Atom
8.5: Two Ideas Leading to a New Quantum Mechanics
8.6: Wave Mechanics
8.7: Quantum Numbers and Electron Orbitals
8.8: Interpreting and Representing the Orbitals of the Hydrogen Atom
8.9: Electron Spin: A Fourth Quantum Number
8.10: Multielectron Atoms
8.11: Electron Configurations
8.12: Electron Configurations and the Periodic Table

9: The Periodic Table and Some Atomic Properties

9.1: Classifying the Elements: The Periodic Law and the Periodic Table
9.2: Metals and Nonmetals and their Ions
9.3: Sizes of Atoms and Ions
9.4: Ionization Energy
9.5: Electron Affinity
9.6: Magnetic Properties
9.7: Periodic Properties of the Elements

• 10: Chemical Bonding I: Basic Concepts

- 10.1: Lewis Theory: An Overview
- 10.2: Covalent Bonding: An Introduction
- 10.3: Polar Covalent Bonds and Electrostatic Potential Maps
- 10.4: Writing Lewis Structures
- 10.5: Resonance
- 10.6: Exceptions to the Octet Rule
- 10.7: Shapes of Molecules
- 10.8: Bond Order and Bond Lengths
- 10.9: Bond Energies

• 11: Chemical Bonding II: Additional Aspects

- 11.1: What a Bonding Theory Should Do
- 11.2: Introduction to the Valence-Bond Method
- 11.3: Hybridization of Atomic Orbitals
- 11.4: Multiple Covalent Bonds
- 11.5: Molecular Orbital Theory
- 11.6: Delocalized Electrons: Bonding in the Benzene Molecule
- 11.7: Bonding in Metals
11.8: Some Unresolved Issues

- 11.E: Chemical Bonding II: Additional Aspects (Exercises)

- **12: Intermolecular Forces: Liquids And Solids**

 - 12.1: Intermolecular Forces
 - 12.2: Some Properties of Liquids
 - 12.3: Some Properties of Solids
 - 12.4: Phase Diagrams
 - 12.5: Network Covalent Solids and Ionic Solids
 - 12.6: Crystal Structures
 - 12.7: Energy Changes in the Formation of Ionic Crystals

- **13: Solutions and their Physical Properties**

 - 13.1: Types of Solutions - Some Terminology
 - 13.2: Solution Concentration
 - 13.3: Intermolecular Forces and the Solution Process
 - 13.4: Solution Formation and Equilibrium
 - 13.5: Solubilities of Gases
 - 13.6: Vapor Pressures of Solutions
 - 13.7: Osmotic Pressure
 - 13.8: Freezing-Point Depression and Boiling-Point Elevation of Nonelectrolyte Solutions
13.9: Solutions of Electrolytes
 ◦ 13.10: Colloidal Mixtures

• 14: Chemical Kinetics
 ◦ 14.1: The Rate of a Chemical Reaction
 ◦ 14.2: Measuring Reaction Rates
 ◦ 14.3: Effect of Concentration on Reaction Rates: The Rate Law
 ◦ 14.4: Zero-Order Reactions
 ◦ 14.5: First-Order Reactions
 ◦ 14.6: Second-Order Reactions
 ◦ 14.7: Reaction Kinetics: A Summary
 ◦ 14.8: Theoretical Models for Chemical Kinetics
 ◦ 14.9: The Effect of Temperature on Reaction Rates
 ◦ 14.10: Reaction Mechanisms
 ◦ 14.11: Catalysis
 ◦ 14.E: Exercises

• 15: Principles of Chemical Equilibrium
 ◦ 15.1: Dynamic Equilibrium
 ◦ 15.2: The Equilibrium Constant Expression
 ◦ 15.3: Relationships Involving Equilibrium Constants
15.4: The Magnitude of an Equilibrium Constant
- 15.5: The Reaction Quotient, Q - Predicting The Direction of Net Change
- 15.6: Altering Equilibrium Conditions: Le Châtelier’s Principle
- 15.7: Equilibrium Calculations: Some Illustrative Examples

16: Acids and Bases

- 16.1: Arrhenius Theory: A Brief Review
- 16.2: Brønsted-Lowry Theory of Acids and Bases
- 16.3: Self-Ionization of Water and the pH Scale
- 16.4: Strong Acids and Strong Bases
- 16.5: Weak Acids and Weak Bases
- 16.6: Polyprotic Acids
- 16.7: Ions as Acids and Bases
- 16.8: Molecular Structure and Acid-Base Behavior
- 16.9: Lewis Acids and Bases
- 16.E: Exercises

17: Additional Aspects of Acid-Base Equilibria

- 17.1: Common-Ion Effect in Acid-Base Equilibria
- 17.2: Buffer Solutions
- 17.3: Acid-Base Indicators
17.4: Neutralization Reactions and Titration Curves
- 17.5: Solutions of Salts of Polyprotic Acids
- 17.6: Acid-Base Equilibrium Calculations: A Summary
- 17.E: Exercises

18: Solubility and Complex-Ion Equilibria
- 18.1: Solubility Product Constant, Ksp
- 18.2: Relationship Between Solubility and Ksp
- 18.3: Common-Ion Effect in Solubility Equilibria
- 18.4: Limitations of the K_{sp} Concept
- 18.5: Criteria for Precipitation and its Completeness
- 18.6: Fractional Precipitation
- 18.7: Solubility and pH
- 18.8: Equilibria Involving Complex Ions
- 18.9: Qualitative Cation Analysis

19: Spontaneous Change: Entropy and Gibbs Energy
- 19.1: Spontaneity: The Meaning of Spontaneous Change
- 19.2: The Concept of Entropy
- 19.3: Evaluating Entropy and Entropy Changes
- 19.4: Criteria for Spontaneous Change: The Second Law of Thermodynamics
19.5: Standard Gibbs Energy Change, ΔG°
- 19.6: Gibbs Energy Change and Equilibrium
- 19.7: ΔG° and K as Functions of Temperature
- 19.8: Coupled Reactions
- 19.E: Chemical Thermodynamics (Exercises)

• 20: Electrochemistry

- 20.1: Electrode Potentials and their Measurement
- 20.2: Standard Electrode Potentials
- 20.3: Ecell, ΔG, and K
- 20.4: Ecell as a Function of Concentrations
- 20.5: Batteries: Producing Electricity Through Chemical Reactions
- 20.6: Corrosion: Unwanted Voltaic Cells
- 20.7: Electrolysis: Causing Nonspontaneous Reactions to Occur
- 20.8: Industrial Electrolysis Processes
- 20.E: Exercises

• 21: Chemistry of The Main-Group Elements I

- 21.1: Periodic Trends and Charge Density
- 21.2: Group 1: The Alkali Metals
- 21.3: Group 2: The Alkaline Earth Metals
21.4: Group 13: The Boron Family
- 21.5: Group 14: The Carbon Family
- 21.E: Exercises

• 22: Chemistry of The Main-Group Elements II

- 22.1: Periodic Trends in Bonding
- 22.2: Group 18 - The Noble Gases
- 22.3: Group 17: The Halogens
- 22.4: Group 16: The Oxygen Family
- 22.5: Group 15: The Nitrogen Family
- 22.6: Hydrogen: A Unique Element
- 22.E: Exercises

• 23: The Transition Elements

- 23.1: General Properties of Transition Metals
- 23.2: Principles of Extractive Metallurgy
- 23.3: Metallurgy of Iron and Steel
- 23.4: First-Row Transition Metal Elements: Scandium to Manganese
- 23.5: The Iron Triad: Iron, Cobalt, and Nickel
- 23.6: Group 11: Copper, Silver, and Gold
- 23.7: Group 12: Zinc, Cadmium, and Mercury
23.8: Lanthanides

23.9: High Temperature Superconductors

23.E: Exercises

- 24: Complex Ions and Coordination Compounds

- 24.1: Werner’s Theory of Coordination Compounds
- 24.2: Ligands
- 24.3: Complex Ion Nomenclature
- 24.4: Isomerism in Coordination Complexes
- 24.5: Bonding in Complex Ions: Crystal Field Theory
- 24.6: Magnetic Properties of Coordination Compounds and Crystal Field Theory
- 24.7: Color and the Colors of Complexes
- 24.8: Aspects of Complex-Ion Equilibria
- 24.9: Acid-Base Reactions of Complex Ions
- 24.10: Some Kinetic Considerations

24.E: Exercises

- 25: Nuclear Chemistry

- 25.1: Radioactivity
- 25.2: Naturally Occurring Radioactive Isotopes
- 25.3: Nuclear Reactions and Artificially Induced Radioactivity
25.4: Transuranium Elements

25.5: Rate of Radioactive Decay

25.6: Energetics of Nuclear Reactions

25.7: Nuclear Stability

25.8: Nuclear Fission

25.9: Nuclear Fusion

25.10: Effect of Radiation on Matter

25.11: Applications of Radioisotopes

25.E: Exercises

• 26: Structure of Organic Compounds

• 27: Reactions of Organic Compounds
27.3: Introduction to Elimination Reactions
- 27.4: Reactions of Alcohols
- 27.5: Introduction to Addition Reactions: Reactions of Alkenes
- 27.6: Electrophilic Aromatic Substitution
- 27.7: Reactions of Alkanes
- 27.8: Polymers and Polymerization Reactions
- 27.9: Synthesis of Organic Compounds

• 28: Chemistry of The Living State

- 28.1: Chemical Structure of Living Matter: An Overview
- 28.2: Lipids
- 28.3: Carbohydrates
- 28.4: Proteins
- 28.5: Aspects of Metabolism
- 28.6: Nucleic Acids

• Back Matter