Formally, in biosynthesis of terpenes, two or more isoprene molecules are linked to one another. Linking between two isoprene molecules could occur in three ways, given that the head and the tail of the molecule are primarily involved in the linking:

1-1 Linkage
The head of one isoprene molecule could link with the head of another isoprene molecule.

![Figure 1: This link is called a head-to-head or 1-1 link.](image)

1-4 Linkage
The head of one isoprene molecule could link with the tail of another isoprene molecule.

![Figure 2: This link is called a head-to-tail or 1-4 link.](image)

4-4 Linkage
The tail of one isoprene molecule could link with the tail of another isoprene molecule.

![Figure 3: This link is called a tail-to-tail or 4-4 link.](image)

Cyclic terpenes also contain links that are neither 1-1, 1-4, nor 4-4, which are called crosslinks.

Definition: The Isoprene Rule

The isoprene rule states that, in most naturally occurring terpenes, there are no 1-1 or 4-4 links.
eg. 1:

![Myrcene structure](image)

Figure 4: Myrcene

eg. 2:

![Limonene structure](image)

Figure 4: Limonene

eg. 3:

![Retinol structure](image)

Figure 5: Retinol

A terpene that does not obey the isoprene rule is called **an irregular terpene**. eg:

![β-Carotene structure](image)

Figure 6: β-Carotene

- see also [isoprene unit](#)
Contributors

- Gamini Gunawardena from the OChemPal site (Utah Valley University)