Epimers are diastereomers that contain more than one chiral center but differ from each other in the absolute configuration at only one chiral center.

eg:

\[\text{CHO} \]
\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{CH}_2\text{OH}
\end{array}
\]

\[\text{CHO} \]
\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{CH}_2\text{OH}
\end{array}
\]

1 and 2 have the same molecular formula and the same structural formula and, therefore, stereoisomers. 1 and 2 are not mirror images of each other and, therefore, are diastereomers.

\[\text{CHO} \]
\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{R} \\
\text{R} \\
\text{CH}_2\text{OH}
\end{array}
\]

[epimeric carbon]

\[\text{CHO} \]
\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{CH}_2\text{OH}
\end{array}
\]

Diastereomers 1 and 2 differ from each other in the absolute configuration at only one chiral center. Thus, 1 and 2 are epimers.

In epimers the chiral carbon atoms whose absolute configuration makes the two compounds different are called the epimeric carbons.
Contributors

- Gamini Gunawardena from the OChemPal site (Utah Valley University)